Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = {1, 2, 3, 4, 5, 6 }
a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.
\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)
b. *Cách 1:
Số chẵn là các số có tận cùng 2, 4, 6
- Gọi số chẵn 6 chữ số khác nhau là abcdef
- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)
Có 5 cách chọn chữ số a;
Có 4 cách chọn chữ số b (b ≠ a)
Có 3 cách chọn chữ số c(c ≠ a, b);
Có 2 cách chọn chữ số d (d ≠ a, b, c);
Có 1 cách chọn chữ số e (e ≠ a, b, c, d);
Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)
*Cách 2:
Với f = 2, 4, 6 có 3 cách chọn f
a, b, c, d, e ≠ f nên có = 5! cách chọn.
Vậy số cách chọn: 5!.3 = 360 (số)
Gọi số lẻ có 6 chữ số a1b1c1d1e1f1
Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.
Vậy ta có: 3.5! = 360 số
c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:
- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn
Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:
n1 = 3 .5! = 360 số.
- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.
Số các số như vậy là: n2 = 2.4! = 48 số
- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:
Số các số như vậy là: n3 = 3! = 6 số
Vậy số các số nhỏ hơn 432.000 là:
n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.
Gọi chữ số hàng chục là x (0<x<9)
Gọi chữ số hàng đơn vị là y(0<y<9)
Vì tổng các chữ số bằng 6 ta có :
\(x+y=6\) (1)
Nếu thêm vào số đó 18 đơn vị thì được một số cũng viết bằng các chữ số đó nhưng theo thứ tự ngược lại nên ta có pt:
\(\left(10x+y\right)+18=10y+x\)
\(\Leftrightarrow\) \(9x-9y=-18\)
\(\Leftrightarrow\) \(x-y=-2\) (2)
Từ (1) và (2) ta có hệ :
\(\hept{\begin{cases}x+y=6\\x-y=2\end{cases}}\)
giải ra ta được :\(\hept{\begin{cases}x=2\\y=4\end{cases}}\) (tm)
Vậy số tự nhiên có 2 chữ số đó là 24
có tất cả là 720 số
Gọi tập hợp số cần tìm là ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4a5a6a1a2a3a4a5a6¯
Ta có: 8=1+3+4=1+2+58=1+3+4=1+2+5 suy ra a3,a4,a5a3,a4,a5 là hoán vị của 1,2,51,2,5 hoặc 1,3,41,3,4
Suy ra có 12 cách chọn ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a3a4a5a3a4a5¯
Với mỗi cách chọn ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a3a4a5a3a4a5¯ thì có 66 cách chọn a1a1
55 cách chọn a2a2
44 cách chọn a6a6
Vậy có tất cả 6.5.4.12=14406.5.4.12=1440 cách chọn