Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A
Vì có 5 bạn học sinh
⇒ nên số cách cho bạn Chi ngồi chính giữa là:
1 cách.
Bốn bạn còn lại xếp vào bốn ghế
⇒ chính là hoán vị của 4 phần tử nên có 4! cách.
Vậy có 1 . 4 ! = 24 cách
Xếp ngẫu nhiên 10 học sinh có 10! cách. Ta tìm số cách xếp thoả mãn
Đánh số ghế lần lượt từ 1 đến 10.
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Nam xếp ghế lẻ, nữ xếp ghế chẵn có 5!5! cách
Nam xếp ghế chẵn, nữ xếp ghế lẻ có 5!5! cách
Vậy có tất cả 5!5!+5!5!cách xếp. Xác suất cần tính bằng 5 ! 5 ! + 5 ! 5 ! 10 ! = 1 126
Chọn đáp án D.
Cách 2: Chia thành 5 cặp ghế đối diện:
Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có C 5 1 C 5 1 2 ! cách
Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 4 1 C 4 1 cách;
Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 3 1 C 3 1 cách;
Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 2 1 C 2 1 cách;
Cặp nam và nữ còn lại xếp vào cặp ghế 5 có 1 cách.
Vậy có tất cả ( C 5 1 C 4 1 C 3 1 C 2 1 ) 2 2 ! = 2 5 ! 2 cách xếp thoả mãn.
Xác suất cần tính bằng 2 5 ! 2 10 ! = 1 216
Chọn đáp án D.
Phương pháp:
Xếp lần lượt chỗ ngồi cho từng học sinh nam và nữ sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. Sử dụng quy tắc nhân.
Cách giải:
Xếp ngẫu nhiên 10 học sinh vào 10 ghế cho 10! cách xếp ⇒ n Ω = 10 !
Gọi A là biến cố: “mỗi học sinh nam đều ngồi đối diện với một học sinh nữ”.
+) Xếp học sinh nam thứ nhất vào 1 trong 10 vị trí cho 10 cách xếp.
Chọn 1 trong 5 bạn nữ xếp ngồi đối diện với bạn nam thứ nhất có 5 cách xếp.
+) Xếp bạn nam thứ 2 vào 1 trong 8 vị trí còn lại có 8 cách xếp.
Chọn 1 trong 4 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ hai có 4 cách xếp.
+) Xếp bạn nam thứ 3 vào 1 trong 6 vị trí còn lại có 6 cách xếp.
Chọn 1 trong 3 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ ba có 3 cách xếp.
+) Xếp bạn nam thứ 4 vào 1 trong 4 vị trí còn lại có 4 cách xếp.
Chọn 1 trong 2 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ tư có 2 cách xếp.
+) Xếp bạn nam thứ 5 vào 1 trong 2 vị trí còn lại có 2 cách xếp.
Xếp 1 bạn nữ còn lại vào vị trí cuối cùng có 1 cách xếp.
ban đầu hội trương có 12 dãy ghế because:
số người đến họp dư la 52 nguoi
52 nguoi ngoi 2 day ghe va them 2 cai
50 nguoi 2 day ghe
1 day ghe 25 nguoi
day ghe ban dau hoi truong la 300/25=12 day ghe
Chọn D.
Số cách sắp xếp chỗ ngồi cho 5 học sinh là 5!=120