Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
a) Đặt \(\frac{x}{-2}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=-2k\\y=-3k\end{cases}}\)
Khi đó 4x - 3y = 9
<=> -8k + 9k = 9
=> k = 9
=> x = -18 ; y = -27
b) Ta có : \(2x=3y\Rightarrow\frac{2x}{6}=\frac{3y}{6}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
=> x = 4 ; y = 6
c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó (3k)2 + (4k)2 = 100
<=> 9k2 + 16k2 = 100
=> 25k2 = 100
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 6 ; y = 8
Khi k = -2 => x = -6 ; y = -8
Vậy các cặp (x;y) thỏa mãn cần tìm là (6;8);(-6;-8)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó x3 + y3 = 91
<=> (3k)3 + (4k)3 = 91
=> 27k3 + 64k3 = 91
=> 91k3 = 91
=> k3 = 1
=> k = 1
=> x = 3 ; y = 4
e) Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
Khi đó x2y = 100
<=> (5k)2.4k = 100
=> 25k2.4k = 100
=> 100k3 = 100
=> k = 1
=> x = 5 ; y = 4
1 do (x-1)4 là số tự nhiên,(y+1)^4 là số tự nhiên
nên để tổng bằng 0 thì cả (x-1)4 và (y+1)^4cùng bằng 0
nên x=0,y=-1
thay x,y vào rồi tính C
ta có:\(A=\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|=14x\left(1\right)\)
do \(\left|x+1\right|\ge0,\left|x+2\right|\ge0,....,\left|x+9\right|\ge0\)
\(\Rightarrow14x>0\)\(\Rightarrow x>0\)
khi đó (1) trở thành:x+1+x+2+x+3+...+x+9=14x
\(\Rightarrow9x+45=14x\)
\(\Rightarrow45=5x\)
\(\Rightarrow x=9\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
1)
a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)
⇒ 16 (x-7) = 6.23
⇒ 16x - 112 = 48
⇒ x = \(\frac{48+112}{16}\) = 10
Vậy: x = 10
b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125
⇒ -0,25x = -2,5 : 0,125 =-20
⇒ x = \(\frac{-20}{-0,25}\) = 80
Vậy: x = 80
d, |2,6−x|=1,5
Hoặc 2,6−x=1,5
⇒ x = 2,6 -1,5 = 1,1
Hoặc 2,6−x=-1,5
⇒ x = 2,6 - (-1,5) = 4,1
Vậy: x ∈ {1,1; 4,1}
e, |x|=2019 và x > 0
Vì x > 0 nên x = - 2019
2)
a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18
+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72
+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162
Vậy: x = -72, y = -162
Lát mình làm tiếp nha mn
Đáp án A