Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)
Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)
\(ĐKXĐ:x\ge0;x\ne\frac{1}{9}\)
\(\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(\left(\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(\frac{3x-3\sqrt{x}+\sqrt{x}-1+5\sqrt{x}+1}{9x-1}.\frac{3\sqrt{x}+1}{3}\)
\(\frac{3x+3\sqrt{x}}{9x-1}.\frac{3\sqrt{x}+1}{3}\)
\(\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
sao biểu thức khi rút gọn xấu vậy bạn ? đề có sai khum :vv, thế tìm x dài lắm bạn ạ
a, Với x > 0 ; \(x\ne1\)
\(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}-x}\right)\)
\(=\left(\frac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right):\left(\frac{2\sqrt{x}-2-2+x}{x\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{2x}{x-1}\right):\left(\frac{x+2\sqrt{x}-4}{x\left(\sqrt{x}-1\right)}\right)=\frac{2x^2}{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}-4\right)}\)
em xin lỗi ,em mới lên lớp 6 thôi
a=\(\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x-1\right)^2-2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\cdot\frac{x+2017}{x}\)
a=\(\frac{\left(x+1\right)\left(x+1-2\right)}{\left(x+1\right)\left(x-1\right)}\cdot\frac{x+2017}{x}\)
a=0