Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có thêm 1 con nữa thì có tổng tất cả: 64 con bò
Người con trai lớn nhận được: 64:2=32 (con bò)
Con trai thứ 2 nhận được: 64:4+3=19 (con bò)
Con út nhận được: 64:8+4=12 (con bò)
do mình không để ý nên khi up câu trả lời lên bị cắt mất hơn 1 nửa , và đây là phần bổ sung
=> thời gian đi trên quãng đường còn lại của người thứ hai là: \(\frac{60-x}{x+4}\)km / h
Do cả 2 người cùng đến điểm B 1 lúc nên ta có phương tình theo bài ra như sau :
\(\frac{60-x}{x}\)= \(\frac{60-x}{x+4}+\frac{1}{3}\)
<=> ( 60-x ) ( \(\frac{1}{x}-\frac{1}{x+4}\)) =\(\frac{1}{3}\)
<=> ( 60 - x ) ( \(\frac{4}{x\left(x+4\right)}\)=\(\frac{1}{3}\)
<=> 3.4.(60-x) = x(x+4)
<=> 720x - 12x = \(x^2\)-8x
<=> \(x^2\)-16x + 720 = 0
=> \(\hept{\begin{cases}x=20\\x=-36\end{cases}}\)vì điều kiện x>0 = > x= -36 loại
Vậy vận tốc của 2 người khi khởi hành là 20km/h
Gọi vận tốc đi lúc đầu của mỗi người là x ( km/h) (x>0)
Sau 1 giờ, quãng đường còn lại của mỗi người là 60-x ( km )
=> Thời gian đi trên quãng đường còn lại của người thứ hai là \(\frac{60-x}{x}\)(h)
Vận tốc đi trên quãng đường còn lại của người thứ nhất là : x+4 ( km/h )
Vì 2 người cùng lúc đến B , ta có phương trình sau :
\(\frac{60-x}{x}\)=\(\frac{60-x}{x+4}\)+\(\frac{1}{3}\)
<=> (\(60-x\)) ( \(\frac{1}{x}-\frac{1}{x+4}\)=\(\frac{1}{3}\)
<=> 3.4.(60-x)=x(x+4)
<=> 720x - 12x = \(x^2\)-4x
<=> \(x^2\)-16x + 720 = 0
=>\(\hept{\begin{cases}x=20\\x=-36\end{cases}}\)[ (theo điều kiện thì x>0 => -36 (loại) ]
vậy vận tốc của 2 xe khi khởi hành là 20km/h
Gọi thời gian người thứ nhất làm một mình để hoàn thành công việc là x (giờ) (x > 0).
Gọi thời gian người thứ hai làm một mình để hoàn thành công việc là y (giờ) y > 0).
Vì cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình :
16 ( \(\dfrac{1}{x}\)+ \(\dfrac{1}{y}\) ) = 1 ⇔ \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (1)
Vì người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành 25% = \(\dfrac{1}{4}\) công việc nên ta có phương trình: 3. + 6.\(\dfrac{1}{y}\) = \(\dfrac{1}{4}\) (2)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\) Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) vào hệ phương trình ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{16}\\3a+6b=\dfrac{1}{4}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a+3b=\dfrac{3}{16}\\3a+6b=\dfrac{1}{4}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3b=\dfrac{-1}{16}\\a+b=\dfrac{1}{16}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}b=\dfrac{1}{48}\\a+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}b=\dfrac{1}{48}\\a=\dfrac{1}{24}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{48}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)
Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.
minh moi hoc lop 6 thoi
đừng có lứa nhé thằng thứ4 hắn chẳng bỏ ra đông nào mà hắn còn bỏ túi 7đ của 3 bạn kia
mà bai nay cung hay thiêt