Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 100 tấm thẻ có 50 tấm được ghi các số chẵn, do đó
Chọn C.
Đáp án D.
Nhận xét:
x chia hết cho 4 khi a chia 4 dư 1 hoặc dư 2. Dãy các số chia 4 dư 1 là: 1; 5; 9; …; 97 (có 25 số); dãy các số chia 4 dư 2 là 2; 6; 10; …; 98 (có 25 số).
Xác suất cần tím là:
a)
Biến cố AB: Số ghi trên thẻ được chọn chia hết cho cả 2 và 3.
b) Hai biến cố A và B không độc lập.
Điều này xảy ra vì nếu một số chia hết cho 2 thì nó có thể chia hết cho 3 (ví dụ: số 6), và ngược lại, nếu một số chia hết cho 3 thì nó cũng có thể chia hết cho 2 (ví dụ: số 6). => Do đó, kết quả của biến cố A ảnh hưởng đến biến cố B và ngược lại, không đảm bảo tính độc lập giữa hai biến cố này.
$HaNa$
a. Chia các số thành 3 tập hợp:
\(A=\left\{3;6;9;12;15;18\right\}\) gồm 6 số chia hết cho 3
\(B=\left\{1;4;7;10;13;16;19\right\}\) gồm 7 số chia 3 dư 1
\(C=\left\{2;5;8;11;14;17\right\}\) gồm 6 số chia 3 dư 2
Tổng 3 số là 1 số chia hết cho 3 khi (cả 3 số đều thuộc cùng 1 tập) hoặc (3 số thuộc 3 tập khác nhau)
Số cách thỏa mãn:
\(C_6^3+C_7^3+C_6^3+C_6^1.C_7^1.C_6^1=...\)
b.
Câu b chắc người ra đề hơi rảnh rỗi?
Chia thành các tập:
\(A_1=\left\{5;10;15\right\}\) gồm 3 số chia hết cho 5
\(B_1=\left\{1;6;11;16\right\}\) 4 số chia 5 dư 1
\(C_1=\left\{2;7;12;17\right\}\) 4 số chia 5 dư 2
\(D_1=\left\{3;8;13;18\right\}\) 4 số
\(E_1=\left\{4;9;14;19\right\}\) 4 số
Tổng 3 số chia hết cho 5 khi (3 số chia hết cho 5), (1 số chia hết cho 5, 1 số dư 1, 1 số dư 4), (1 chia hết, 1 dư 2, 1 dư 3), (2 dư 1, 1 dư 3), (1 dư 1, 2 dư 2), (1 dư 2, 2 dư 4), (2 dư 3, 1 dư 4)
Số cách:
\(C_3^3+C_3^1.C_4^1.C_4^1+C_3^1.C_4^1.C_4^1+4.C_4^2.C_4^1=...\)
Haizz. Mik cx tham khảo rồi. Cái quan trọng là chọn chia hết cho 3
a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`
P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`
b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".
$HaNa$
+ Từ 1 đến 100 có 33 số chia hết cho 3. Do đó, số cách chọn 5 tấm thẻ mà không có tấm thẻ nào ghi số chia hết cho 3 là:
Vậy .
Chọn D.