Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài ban đầu là : x ( x > 0 )
Chiều rộng ban đầu là : x - 9 ( m )
Chiều dài sau khi tăng là : x + 3 ( m )
Chiều rộng sau khi giảm là : x - 10 ( m )
Vì diện tích hình chữ nhật không đổi nên ta có phương trình:
\(x\left(x-9\right)=\left(x+3\right)\left(x-10\right)\)
\(\Leftrightarrow x^2-9x=x^2-7x-30\)
\(\Leftrightarrow9x-7x=30\)
\(\Leftrightarrow x=15\) ( nhận )
Diện tích hình chữ nhật ban đầu là:
\(15\left(15-9\right)=90\left(m^2\right)\)
Vậy diện tích hình chữ nhật ban đầu là: 90 m2
Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1
Chiều dài ban đầu của mảnh đất: \(x+3\) (m)
Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)
Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)
Chiều rộng lúc sau: \(x-1\) (m)
Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)
Do diện tích mảnh đất ko đổi nên ta có pt:
\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+3x=x^2+4x-5\)
\(\Leftrightarrow x=5\left(m\right)\)
Vậy mảnh đất ban đầu rộng 5m, dài 8m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)
Diện tích ban đầu la 20x40=800(m2)
Gọi chiều dài của mảnh đất hình chữ nhật là x (m, x > 4)
Khi đó chiều rộng của mảnh đất hình chữ nhật là \(\frac{240}{x}\left(m\right)\)
Khi tăng chiều rộng 3m, giảm chiều dài 4m thì diện tích mảnh đất là:
\(\left(x-4\right)\left(\frac{240}{x}+3\right)\)
Do diện tích không đổi nên ta có phương trình:
\(\left(x-4\right)\left(\frac{240}{x}+3\right)=240\)
\(\Rightarrow240+3x-\frac{960}{x}-12=240\)
\(\Rightarrow3x^2-12x-960=0\Rightarrow\orbr{\begin{cases}x=20\left(n\right)\\x=-16\left(l\right)\end{cases}}\)
Vậy chiều dài mảnh đất là 20m, chiều rộng mảnh đất là 12m.
Gọi chiều rộng của mảnh đất là x (m, x > 0).
Diện tích bằng 240 m 2 ⇒ Δ = 3 2 – 4 . 1 . ( - 180 ) = 729 ⇒ Chiều dài mảnh đất là: (m).
Diện tích mảnh đất sau khi tăng chiều rộng 3m, giảm chiều dài 4m là:
Theo bài ra: diện tích mảnh đất không đổi nên ta có phương trình:
Có a = 1; b = 3; c = -180
Phương trình có hai nghiệm:
Trong hai nghiệm chỉ có nghiệm x = 12 thỏa mãn điều kiện.
Vậy mảnh đất có chiều rộng bằng 12m, chiều dài bằng 240 : 12 = 20 (m).
Gọi chiều rộng của mảnh đất là x (m, x > 0).
Diện tích bằng 240 m2 ⇒ Chiều dài mảnh đất là: (m).
Diện tích mảnh đất sau khi tăng chiều rộng 3m, giảm chiều dài 4m là:
Theo bài ra: diện tích mảnh đất không đổi nên ta có phương trình:
Có a = 1; b = 3; c = -180 ⇒ Δ = 32 – 4.1.(-180) = 729
Phương trình có hai nghiệm:
Trong hai nghiệm chỉ có nghiệm x = 12 thỏa mãn điều kiện.
Vậy mảnh đất có chiều rộng bằng 12m, chiều dài bằng 240 : 12 = 20 (m).
Gọi chiều dài và chiều rộng của mảnh đất đó lần lượt là x(m) và y(m)(Điều kiện: 0<x<38; 0<y<38 và x≥y)
Vì mảnh đất có chu vi là 76m nên ta có phương trình:
2(x+y)=76
hay x+y=38(1)
Vì khi giảm chiều dài đi 3m và tăng chiều rộng thêm 3m thì chiều dài bằng chiều rộng nên x-3=y+3
hay x-y=6(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=38\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=44\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=22\left(nhận\right)\\y=22-6=16\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều dài của mảnh đất là 22m
Chiều rộng của mảnh đất là 16m
Gọi chiều dài và chiều rộng ban đầu của mảnh đất hình chữ nhật lần lượt là \(x,y\left(x\ge y>0\right)\)
Vì chu vi ban đầu của hình chữ nhật là 120m nên ta có phương trình \(2\left(x+y\right)=120\)\(\Leftrightarrow x+y=60\)(1)
Chiều rộng lúc sau là: \(y+5\)(m)
Chiều dài lúc sau là: \(x-25\%x=75\%x=\frac{3}{4}x\)(m)
Chu vi hình chữ nhật lúc sau là: \(2\left(y+5+\frac{3}{4}x\right)=\frac{3}{2}x+2y+10\)
Vì chu vi lúc sau bị giảm đi 10m nên ta có phương trình \(120-\left(\frac{3}{2}x+2y+10\right)=10\)
\(\Leftrightarrow\frac{3}{2}x+2y+10=110\)\(\Leftrightarrow\frac{3}{2}x+2y=100\)\(\Leftrightarrow3x+4y=200\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}x+y=60\\3x+4y=200\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+3y=180\\3x+4y=200\end{cases}}\Leftrightarrow\hept{\begin{cases}y=20\\x=40\end{cases}}\)(nhận)
Vậy diện tích mảnh đất ban đầu là \(20.40=800\left(m^2\right)\)
Bài giải:
Nửa chu vi mảnh đất là: 120:2=60(m)
HV có cạnh dài là: 60:2=30(m)
CR mảnh đất đó là: 30-5=25(m)
CD mảnh đất đó là: 60-25=35(m)
DT mảnh đất ban đầu là: 35x25=875(m2)
Đáp số:875 m2
thick cho mình nha.
Này cậu :)))))
Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m )
( 40 < x < 80 ; 0 < y < 40 )
Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )
Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )
Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P
Gọi chiều dài chiều rộng lần lượt là a ; b ( a > b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}2\left(a+b\right)=38\\\left(a+3\right)\left(b-1\right)=ab+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12\\b=7\end{matrix}\right.\)(tm)
Diện tích ban đầu là 12.7 = 84m2
Vậy ...