Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)
\(\Leftrightarrow\frac{a+b}{ab}==\frac{-a-b}{ac+bc+c^2}\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=> a = - b hoặc a= - c hoặc b = - c
Với \(a=-b\) thì \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\) (1)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)(2)
Từ (1);(2) => \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)
Còn 2 TH nữa là b = - c và - c = a bn xét tiếp nha
Có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Leftrightarrow abc+ca^2+a^2b+b^2c+abc+ab^2+c^2b+c^2a+abc=abc\)
\(\Leftrightarrow3abc+ca^2+a^2b+b^2c+ab^2+c^2b+c^2a=abc\)
\(\Leftrightarrow2abc+a^2b+a^2c+b^2c+b^2a+c^2b+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Với a + b = 0
=> a = -b
Thay vào biểu thức cần chứng minh
=> \(\frac{1}{c^3}=\frac{1}{c^3}\) (đúng)
Tượng tự với 2 trường hợp còn lại .
cái này trong toán violympic tiếng anh cấp tỉnh vong 9 do
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
1a)\(a^2+b^2\ge\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{1}{4}\)(1)
Lại có:\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow\left(1\right)\) đúng\(\Rightarrowđpcm\)
1b)\(a^2+b^2+c^2\ge\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{1}{6}\)(2)
Lại có:\(\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{\left(a+b+c\right)^2}{6}=\dfrac{1}{6}\)
\(\Rightarrow\left(2\right)\) đúng\(\Rightarrowđpcm\)
2b)Ta có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(bđt phụ)
\(\Leftrightarrow ab+bc+ca\le\dfrac{4^2}{3}=\dfrac{16}{3}\)
\(\Rightarrow MAXA=\dfrac{16}{3}\Leftrightarrow x=y=z=\dfrac{4}{3}\)