K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 10 2015
a, a/b = c/d => a+b/c+d = a-b/c-d
=> a+b/a-b = c+d/c-d
8 tháng 7 2016
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đổi trung tỉ)
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) => \(\frac{a+b+c+d}{a+b-\left(c+d\right)}=\frac{a-b+c-d}{a-b-\left(c-d\right)}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c+d}{a+b-\left(c+d\right)}=\frac{a-b+c-d}{a-b-\left(c-d\right)}=\frac{\left(a+b+c+d\right)+\left(a-b+c-d\right)}{\left(a+b-\left(c+d\right)\right)+\left(a-b-\left(c-d\right)\right)}=\frac{\left(a+b+c+d\right)-\left(a-b+c-d\right)}{\left(a+b-\left(c+d\right)\right)-\left(a-b-\left(c-d\right)\right)}\)
=> \(\frac{a+c}{a-c}=\frac{b+d}{b-d}\)=> \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\) => \(\frac{\left(a+c\right)+\left(a-c\right)}{\left(b+d\right)+\left(b-d\right)}=\frac{\left(a+c\right)-\left(a-c\right)}{\left(b+d\right)-\left(b-d\right)}\)=> \(\frac{a}{b}=\frac{c}{d}\)
Vậy...