Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình mới học lớp 7
...............
/////////////////////////////////
...............................
đề sai : đề thật nè Chứng minh rằng m^3+20m chia hết cho 48
m = 2k thì
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5)
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong.
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2
Vậy k(k^2 + 5) chia hết cho 2
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3
Vậy k(k^2 + 5) chia hết cho 3
=>dpcm
tk nha bạn
thank you bạn
(^_^)
copy cái bài trên mạng ak :) có đáp án rồi mờ :) đăng lên làm j ? :))
Cách 1:
Ta có:
\(A=n^4-6n^3+27n^2-54n+32=(n^4-n^3)-5n^3+5n^2+22n^2-22n-32n+32\)
\(=n^3(n-1)-5n^2(n-1)+22n(n-1)-32(n-1)\)
\(=(n-1)(n^3-5n^2+22n-32)\)
\(=(n-1)(n^3-2n^2-3n^2+6n+16n-32)\)
\(=(n-1)[n^2(n-2)-3n(n-2)+16(n-2)]\)
\(=(n-1)(n-2)(n^2-3n+16)\)
Ta thấy $(n-1)(n-2)$ là tích 2 số nguyên liên tiếp nên \((n-1)(n-2)\vdots 2\)
\(\Rightarrow A=(n-1)(n-2)(n^2-3n+16)\vdots 2\)
Ta có đpcm.
Cách 2:
\(A=n^4-6n^3+27n^2-54n+32\)
\(=(n^4+27n^2)-(6n^3+54n-32)\)
\(=n^2(n^2+27)-2(3n^3+27n-16)\)
Ta thấy \(n^2+27-n^2=27\) lẻ nên $n^2, n^2+27$ khác tính chẵn lẻ
Do đó trong 2 số $n^2$ và $n^2+27$ có 1 số chẵn, 1 số lẻ
\(\Rightarrow n^2(n^2+27)\vdots 2\)
Mà \(2(3n^3+27n-16)\vdots 2\)
Suy ra \(A=n^2(n^2+27)-2(3n^3+27n-16)\vdots 2\)
Ta có đpcm.
\(A=n^4-6n^3+27n^2-54n+32\)
\(=\left(n^4-3n^3+16n^2\right)-\left(3n^3-9n^2+48n\right)+\left(2n^2-6n+32\right)\)
\(=n^2\left(n^2-3n+16\right)-3n\left(n^2-3n+16\right)+2\left(n^2-3n+16\right)\)
\(=\left(n^2-3n+2\right)\left(n^2-3n+16\right)\)
\(=\left(n-2\right)\left(n-1\right)\left(n^2-3n+16\right)\)
Nhận thấy: \(\left(n-2\right)\left(n-1\right)\)là tích 2 số nguyên liên tiếp \(\left(n\in Z\right)\)
=> \( \left(n-2\right)\left(n-1\right)\)\(⋮\)\(2\)
=> A chia hết cho 2
a2 - a = a ( a - 1 )
mà a và a-1 là 2 số liên tiếp
=> 1 trong 2 số là số chẵn
=> a ( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2
Ta có : \(a^2-a=a\left(a-1\right)\)
Vì \(a\left(a-1\right)\)là tích 2 số nguyên liên tiếp nên
\(a\left(a-1\right)⋮2\)
+ \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên :
\(a\left(a-1\right)\left(a+1\right)⋮3\)
+ \(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(+5\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)
\(\Rightarrow a^5-a⋮5\)
\(n^4-6n^3+27n^2-54n+32\)
\(=n^4-n^3-5n^3+5n^2+22n^2-22n+32n-32\)
\(=\left(n-1\right)\left(n^3-5n^2+22n+32\right)\)
\(=\left(n-1\right)\left(n^3-2n^2-3n^2+6n+16n+32\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\) chia hếtcho 2
chiu
tk nhe
xin do
bye