Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- 1/2.2<1/1.2
- 1/3.3<2.3
- ...
- 1/1990.1990<1/1990.1989
- => 1/2^2+... +1/1990^2< 1/1.2+1/2.3+...+ 1/1990+1989
=>1/2^2+...+1/1990^2<1/1990<3/4
xét vế trái
=(1+1/3+1/5+...+1/1989)-(1/2+1/4+...+1/1990)
=(1+1/2+1/3+1/4+...+1/1990)-2.(1/2+1/4+...+1/1990)
=(1+1/2+1/3+1/4+...+1/1990)-!1+1/2+1/3+1/4+...+1/995)
=1/996+1/997+.../1+1990
vậy 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...+1/1990
cmr 1-$\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+\frac{1}{998}+.......+\frac{1}{1990}$
Đặt \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=A\)
ta có :\(\frac{1}{2^2}=\frac{1}{2\cdot2}=\frac{1}{4}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1990^2}=\frac{1}{1990\cdot1990}< \frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2\cdot3}+...+\frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\left(ĐPCM\right)\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
hk tốt #
Ta có \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1990^2}< \frac{1}{1989.1990}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
\(\Rightarrow\)Bài toán được chứng minh
Ta có:\(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\left(đpcm\right)\)
Gọi \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)
Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow D< \frac{3}{4}\left(đpcm\right)\)
ta có \(\frac{1}{1^2}<\frac{1}{1.2},\frac{1}{2^2}<\frac{1}{2.3},.........,\frac{1}{100^2}<\frac{1}{100.101}\)
=> A <\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{100.101}\)
dến đây bạn tự tính nha mình tính đc bằng
A < \(\frac{1}{1}-\frac{1}{101}\)
bây giờ tự lập luận là đc , đơn giản mà
kết bạn vs mình cũng đc , có bài nào thì mình bày cho