Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3.5x^2+2x=\left(10x^5+2x\right):\left(2x-1\right)\)
\(=5x^4+\dfrac{5}{2}x^3+\dfrac{5}{4}x^2+\dfrac{5}{8}x+\dfrac{11}{16}\)(dư \(\dfrac{11}{16}\))
Gọi đa thức dư là ax+b và thương là h(x)
có f(x)=g(x).h(x)+ax+b
thay=1 x=-1 lần lượt ta đc(vì 1-x^2có x=1 x=-1)
a+b=5 và -a+b=1
suy ra a=2 b=3
vậy dư là 2x+3
Lời giải:
Đặt $A=x^{2011}+x^{2010}+....+x+1$
$Ax=x^{2012}+x^{2011}+...+x^2+x$
$\Rightarrow Ax-A=x^{2012}-1$
$\Rightarrow A=\frac{x^{2012}-1}{x-1}$
$B=x^{502}+x^{501}+...+x+1$
$Bx=x^{503}+x^{502}+....+x^2+x$
$\Rightarrow Bx-B=x^{503}-1$
$\Rightarrow B=\frac{x^{503}-1}{x-1}$
Khi đó: $A:B = \frac{x^{2012}-1}{x-1}: \frac{x^{503}-1}{x-1}=\frac{x^{2012}-1}{x^{503}-1}=\frac{(x^{503})^4-1}{x^{503}-1}$
Đặt $x^{503}=a$ thì:
$A:B=\frac{a^4-1}{a-1}=a^3+a^2+a+1$
$\Rightarrow A\vdots B$
\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left(x-3\right)^2=\left(x-1\right)\left(x+1\right)\left(x-3\right)^2\)
a) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
b) Ta có: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
c) Ta có: \(x^5+x+1\)
\(=x^5+x^2-x^2+x-1\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)