Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://cdn.powergatevn.com/Stas/Images/2014/8/29/HA622u0e.jpg
Xét tam giác ABC vuông tại A
Vẽ đường trung trực d1 của cạnh AB, cắt AB tại I
vẽ đường trung trực d2 của cạnh AC, cắt AC tại H
Giả sử d1 và d2 cắt nhau tại O. Ta có OA = OB ; OA = OC (t/c đường trung trực)
Xét 2 tam giác vuông OAI và OBI có:
OA = OB (cmt)
IO chung
=> Tam giác OAI = tam giác OBI (cạnh huyền - cạnh góc vuông)
=> IA = IB (2 cạnh tương ứng) => IO là đường trung tuyến
Xét 2 tam giác vuông OAH và OCH có:
OA = OC (cmt)
HO chung
=> Tam giác OAH = tam giác OCH (cạnh huyền - cạnh góc vuông)
=> IA = IC (2 cạnh tương ứng) => OH là đường trung tuyến
mà OH và OI giao nhau tại 1 điểm O => O là trọng tâm
nên OA là đường trung tuyến => Điều phải chứng minh
Kẻ đường trung trực của AC cắt BC tại K
Nối AK.
Ta có: KA = KC (tính chất đường trung trực)
Suy ra: Δ KAC cân tại K
Suy ra: ∠(KAC) = ∠C (1)
Lại có: ∠C + ∠B = 90o (t/chất tam giác vuông) (2)
Mà: ∠(KAC) + ∠(KAB) = ∠(BAC) = 90o (3)
Từ (1); (2) và (3) suy ra: ∠B = ∠(KAB)
Do đó; Δ KAB cân tại K ⇒ KA = KB
Suy ra: K thuộc đường trung trực của AB
Do đó K là giao điểm ba đường trung trực của Δ ABC
Suy ra: KB = KC = KA ⇒ K là trung điểm của BC
Vậy các đường trung trực của tam giác vuông đi qua trung điểm cạnh huyền
Đường trung trực cạnh nào bạn mà hình như đề bài của bạn sai rồi
Vì tâm đường tròn đi qua 3 đỉnh của tam giác với mỗi tam giác chỉ có duy nhất 1 điểm.
Gọi I là trung điểm cạnh huyển BC của tam giác ABC vuông tại A.
Ta sẽ đi chứng minh I là tâm đường tròn đi qua 3 đỉnh tam giác ABC.
Thật vậy, trên tia đối tia IA , ta lấy điểm D sao cho IA=ID .
Vì I là trung điểm BC => IB=IC
Xét tam giác AIB và tam giác CID có:
AI=IC ; BI=ID ; AIB =CID (2 góc đối đỉnh)
=> Tam giác AIB =tam giác CID (c.g.c)
=> AB=CD; IAB = ICD
Vì IAB =ICD , mà 2 góc này ở vị trí so le trong
=> AB// CD Mà AB vuông góc với AC
=> CD vuông góc AC => ACD = 90
Xét tam giác BAC và DCA có:
AC chung ; AB=DC ; BAC = DCA =90
=> BAC = DCA(c.g.c)
=> BC = DA
Mà IB = IC = BC/2; AI=ID =DA/2
=> IB=IC=IA
=> I là tâm đường tròn đi qua A,B, C
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
a: Xét ΔADC và ΔAEB có
AD=AE
góc A chung
AC=AB
=>ΔADC=ΔAEB
b: Gọi giao của 3 đường trung trực trong ΔABC là O
=>OB=OC
Kẻ OK vuông góc BC, OK cắt DE tại M
=>OK là trung trực của BC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>OM vuông góc DE tạiM
Xét ΔOBD và ΔOCE có
OB=OC
góc OBD=góc OCE
BD=CE
=>ΔOBD=ΔOCE
=>OE=OD
=>OM là trung trực của DE
Nối I với A,
Xét tam giác ABC vuông tại A, vẽ đường trung trực của AB và BC cắt ở I
\(\Rightarrow\)IA = IB \(\Rightarrow\)\(\Delta IAB\)cân tại I
\(\Rightarrow\)\(\widehat{IAB}=\widehat{IBA}\)
Mà \(\widehat{IAB}+\widehat{IAC}=\widehat{IAB}+\widehat{ICA}\left(=90^o\right)\)
\(\Rightarrow\)\(\widehat{IAC}=\widehat{ICA}\)
\(\Rightarrow\)\(\Delta IAC\)cân tại I \(\Rightarrow\)IA = IC
\(\Rightarrow\)I thuộc đường trung trực của đoạn thẳng AC
Vậy các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền