Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(n^2+1\right)\left(n^2+4\right)\)
\(=n\left(n^2-4+5\right)\left(n^2-1+5\right)\)
\(=n\left[\left(n-2\right)\left(n+2\right)+5\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\left[n\left(n-2\right)\left(n+2\right)+5n\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(+5n^2\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Vì ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) là tích 5 số nguyên liên tiếp
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) chia hết cho 5
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) + 5n^2( n - 2 )( n - 1 )( n + 1 )( n + 2 ) chia hết cho 5
\(\Rightarrow n\left(n^2+1\right)\left(n^2+4\right)⋮5\)
Chúng minh rằng :
a) ( 5n )^100 chia hết cho 125
( 5n )^100 = ( 5n )^2 .50
= ( 5n . 5 . 5)^50
= ( 5 . 5 . 5 . n )^50
= ( 125n )^50 chia hết cho 125
b) 8^8 + 2^20 chia hết cho 17
8^8 + 2^20
= ( 2^3 )^8 + 2^20
= 2^24 + 2^20
= 2^20 . 2^4 + 2^20 . 1
= 2^20 . 16 + 2^20 . 1
= 2^20 . ( 16 + 1 )
= 2^20 . 17 chia hết cho 17
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3B-B=1-\frac{1}{3^{99}}\)
\(B=\frac{1-\frac{1}{3^{99}}}{2}\)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)
\(3A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
Chúc bạn học tốt ~