K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

Mình đang cần gấp

7 tháng 12 2018

gọi ƯCLN(4n+1;n+1) =d

Ta có:\(\hept{\begin{cases}4n+1⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+1⋮d\\4\left(n+1\right)⋮d\end{cases}}\)

\(\Rightarrow4\left(n+1\right)-4n-1⋮d\)

\(\Rightarrow3⋮d\)\(\Rightarrow d\in\left\{1;3\right\}\)

VÌ 4n+1 và n+1 khác tính chẵn lẻ

=> d=1

Vậy 4n+1 và n+1 là 2 số nguyên tố cùng nhau vs mọi STN n (đpcm)

3 tháng 5 2019

Gọi d là 1 ước chung của 4n + 2 và 6n + 1. Ta có :

4n + 2 :: d ; 6n + 1 :: d

=> 3( 4n + 2 ) - 2( 6n + 1 ) :: d

=> 12n + 6 - 12n + 2 :: d

=> 4 :: d => d thuộc { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }

Mà 6n + 1 là số lẻ => n thuộc { -1; 1 } ( nguyên tố )

Vậy 4n + 2 và 6n + 1 nguyên tố cùng nhau ( đpcm )

22 tháng 12 2017

Gọi  (3n + 1; 4n + 1) = d

Ta có:  3n + 1 \(⋮d\)

            4n + 1 \(⋮d\)

Xét hiệu:  4(3n + 1) - 3(4n + 1) \(⋮d\)

\(\Leftrightarrow\)12n + 4 - 12n - 3  \(⋮d\)

\(\Leftrightarrow\)1  \(⋮d\)   \(\Leftrightarrow\)d = 1

Vậy   3n + 1  và  4n + 1   là 2 số nguyên tố cùng nhau  \(\forall n\) \(\in N\)\(\ne0\))

22 tháng 12 2017

Gọi ƯCLN(3n + 1, 4n + 1) = d ( d thuộc N, d khác 0 )

=> 3n + 1 chia hết cho d; 4n + 1 chia hết cho d

=> (3n + 1) . 4 chia hết cho d; (4n+1) . 3 chia hết cho d

=> 12n + 4 chia hết cho d; 12n + 3 chia hết cho d

=>[ (12n + 4 ) - ( 12n + 3 ) ] chia hết cho d

=> 1 chia hết cho d

=>d thuộc Ư(1)

=> d = 1

Vậy với mọi n thuộc N và n khác 0 thì 3n + 1; 4n + 1 nguyên tố cùng nhau

18 tháng 12 2023

Gọi ước chung lớn nhất của a và b là d ta có:

\(\left\{{}\begin{matrix}n+1⋮d\\4n^2+8n+5⋮d\end{matrix}\right.\)

⇒ (4n 2 + 4n) + (4n + 4) + 1 ⋮ d

   ⇒4n(n + 1) + 4(n + 1) + 1 ⋮ d

⇒ (n +1).(4n + 4) + 1 ⋮ d

⇒ 1 ⋮ d ⇒ d = 1 

⇒(a;b) = 1 hay a; b là hai số nguyên tố cùng nhau (đpcm)

18 tháng 12 2023

\(325+376\\ \)

5 tháng 1 2022

4n+1 chia hết N

8n+4 chia hết N

<=> 4n+1 chia hết N => 8n+2 chia hết N

8n+2 chia hết N}

                           } 2chia hết cho N

8n+4 chia hết N}

Mà 2 là số nguyên tố nên 4n+1 và 8n+4 là hai số nguyên tố với mọi số tự nhiên N

Gọi \(d=ƯCLN\left(4n+1;5n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20n+5⋮d\\20n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

Vậy: 4n+1 và 5n+1 là hai số nguyên tố cùng nhau

7 tháng 1 2016

Gọi ƯCLN(2n+3,4n+8)là d

Ta có :

      2n+3 chia hết cho d

suy ra 4n+6 chia hết cho d

suy ra : (4n+8)-(4n+6)chia hết cho d 

suy ra : 2 chia hết cho d

suy ra d thuộc Ư(2)

Ư(2)=1,2

Vì 2n+3 chia hết cho d,mà 3 lẻ,suy ra d lẻ

suy ra d=1

vậy ƯCLN(2n+3,4n+8)=d=1

vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

tick nhé

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.