K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

2014100 +201499=201499.(2014+1)=201499.2015

=>201499.2015 chia hết cho 2015

=>2014100 +201499 chia hết cho 2015

4 tháng 7 2015

2014100 +201499=201499.(2014+1)=201499.2015

=>201499.2015 chia hết cho 2015

=>2014100 +201499 chia hết cho 2015

26 tháng 8 2015

Chọn dãy

1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)

Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19

2 số đó là

111..1(a c/s 1); 11..1(b c/s 1)                   [1< a < b < 20]

=>111..1 - 11..1 chia hết cho 19                                         [b c/s 1 - a c/s 1]

=>111...100...0 chia hết cho 19                                          [b - a c/s 1 ; a c/s 0]

=>11..1 x 10a chia hết cho 19                                             [b-a c/s 1]

Mà (19;10)=1 =>(19;10a)=1

=> 111..1 chia hết cho 19 với b-a c/s 1

2 tháng 9 2015

Câu 3

Giả Sử: k = 4n

=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10

Vậy có thể tìm đc 1 STN k chia hết cho 10

10 tháng 9 2016

a) Đặt A = 1 + 7 + 72 + 73 + 74 + ... + 72015 (có 2016 số; 2016 chia hết cho 4)

A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (72012 + 72013 + 72014 + 72015)

A = 400 + 74.(1 + 7 + 72 + 73) + ... + 72012.(1 + 7 + 72 + 73)

A = 400 + 74.400 + ... + 72012.400

A = 400.(1 + 74 + ... + 72012)

A = (...0) (đpcm)

b) Dãy số 1; 7; 72; 73; 74; ...; 72015 gồm có 2016 số hạng

Ta đã biết 1 số tự nhiên khi chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2014. Có 2016 số mà chỉ có 2015 loại số dư nên theo nguyên lí Dirichlet sẽ có ít nhất 2 số cùng dư khi chia cho 2015

Hiệu của 2 số này chia hết cho 2015

Vậy có thể tìm được 2 số hạng của dãy mà hiệu của chúng chia hết cho 2015

9 tháng 6 2015

Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

9 tháng 6 2015

Cho mình làm lại nha :

Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) 

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

2 tháng 1 2016

1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)

2 tháng 1 2016

làm các con kia tương tự nhé ^^

21 tháng 12 2015

Ta có A = 3^2015 - 2^2015 + 3^2013 - 2^2013

            = 3^2015 + 3^2013 - ( 2^2015 + 2^2013)

            = 3^2013.3^2 + 3^2013 - ( 2^2013.2^2 + 2^2013)

            = 3^2013.(3^2+1) - 2^2013.(2^2+1)

            = 3^2013.10 - 2^2013.5

            = 3^2013.2.5 - 2^2013.5

            = 5 . (3^2013.2 - 2^2013) chia hết cho 5 

Vậy A chia hết cho 5