Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
Do \(19.6^n⋮19\Rightarrow A⋮19\)
A = 7.52n + 12.6n
A = 7.(52)n + 12.6n
A = 7.25n + 12.6n
25 \(\equiv\) 6 (mod 19)
25n \(\equiv\) 6n (mod 19)
7 \(\equiv\) - 12 (mod 19)
⇒ 7.25n \(\equiv\) -12.6n (mod 19)
⇒ 7.25n -( -12.6n) ⋮ 19
⇒ 7.25n + 12.6n ⋮ 19
Câu 1 cách làm:
Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính
2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)
Ta có: 34 = 1 (mod 5)
=>34n = 1n (mod 5)
=>34n.3 = 1.3 (mod 5)
=>34n+1 = 3 (mod 5)
=>34n+1+2 = 3+2 (mod 5)
=>P = 0 (mod 5)
Vậy P chia hết cho 5(đpcm)
"=" là đồng dư nha
ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5
vậy p chia hết cho 5(đpcm)
Ta có : m +11n \(⋮\) 12
<=> 9m + 99n \(⋮\) 12
Mà [( 9m + 99n) - (9m +3n) ] = 96n \(⋮\) 12
Vì 9m + 99n \(⋮\) 12 ; 96n \(⋮\) 12
Nên 9m+3n \(⋮\)12 ( đpcm)
\(\left(m+11n\right)⋮12\Rightarrow-3\left(m+11n\right)⋮12\)
\(\Leftrightarrow\left(-3m-33n+12m+36n\right)⋮12\)
\(\Leftrightarrow\left(9m+3n\right)⋮12\)
............?
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Tacó: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
144n – 11n chia hết 133 11n + 1 + 122n + 1