K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Nghiệm nguyên x;y;z hay nghiệm nguyên n thế?

Có lời giải ở đây:wiles.pdf

Nếu đọc mà hiểu được có có phần thưởng rồi cơ, không cần phải giải được!

Theo đề: \(5^y=6^z-4^x\)

Vì \(y\inℕ\)nên vế trái chắc chắn là số lẻ do đó vế phải cũng lẻ

Mà \(6^z,4^x\)đều là lũy thừa cơ số chẵn do vậy 1 trong 2 \(x,z\)phải bằng \(0\)

Mà \(6^z-4^x=5^y>0\Rightarrow6^z>4^x\)nên \(z\)không thể bằng \(0\)

Do đó \(x=0\)

\(\Rightarrow6^z-5^y=1\)vì các lũy thừa bậc cao của 5 và 6 không thể là các số tự nhiên liên tiếp nên \(y=z=1\)

Vậy nghiệm của phương trình là \(x=0,y=z=1\)

10 tháng 1 2022

j vây lm g

10 tháng 1 2022

với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...

với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm

với n>2

 nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n

suy ra xn+yn<zn (1)

nếu  x2+y2<z2 suy ra 

 (x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n

mà   (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra  xn+yn<zn  (2)

còn trường hợp  x2+y2>z2 mình chưa nghĩ ra nha

bạn thông cảm nhé

@minhnguvn

19 tháng 10 2018

\(4x^2+y^2+z^2+t^2\ge2x\left(y+z+t\right)\)

\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy-2xz-2xt\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x-t\right)^2+x^2\ge0\)(đúng)

=>đpcm

"="<=>x=y=z=t=0

25 tháng 10 2022

\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy+2xz-2xt>=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2>=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+z\right)^2+\left(x-t\right)^2+x^2>=0\)(luôn đúng)