K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

vì n là số nguyên tố ,n>3 nên n có dạng: 3k+1 hoặc 3k+2

với n=3k+1 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k +1-1\right)\left(3k+1+1\right)=\)\(3k\left(3k+2\right)⋮3\)(1)

với n=3k+2 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k+2+1\right)\left(3k+2-1\right)=\)\(\left(3k+3\right)\left(3k+1\right)=\)\(3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

vì n là số nguyên tố lớn hơn 3 nên n là số lẻ nên n có dạng 2m+1

n=2m+1 thì

\(\left(n+1\right)\left(n-1\right)=\left(2m+1+1\right)\left(2m+1-1\right)\)\(=\left(2m+2\right)2m=2.2m\left(m+1\right)\)\(4m\left(m+1\right)⋮8\)(vì m(m+1) là hai sô tự nhiên liên tiếp nên tồn tại một số chia hết cho 2 nhân 4 nữa là chia hết cho 8)      (3)

mà (8,3)=1

từ (1),(2),(3) được đpcm

15 tháng 11 2018

vì n>3 nên n có dạng n=3k+1 hoặc n=3k+2
với n=3k+1 thì (n+1)(n-1)=(3k+2)3k chia hết cho 3
với n=3k+2 thì (n+1)(n-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố n>3 thì (n+1)(n-1) chia hết cho 3 (1)
mặt khác vì n>3 nên n là số lẻ =>n+1; n-1 là 2 số chẵn liên tiếp
=>trong hai số n+1; n-1 tồn tại một số là bội của 4
=> (n+1)(n-1) chia hết cho 8 (2)
từ (1) và (2) => (n+1)(n-1) chia hết cho 24 với mọi số nguyên tố n>3

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

DD
28 tháng 9 2021

a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ. 

\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)

(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).

Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).

Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).

b) Đặt \(\left(2n+1,3n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

18 tháng 2 2016

nếu giả sử câu b cũng tương tự như câu a thi ta co cach nhu sau

4 mũ n-1 chia hết cho 3 thì suy ra     n=2