K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 5 2019

Lời giải:

Với $a\neq b; a,b\geq 0$ ta luôn có: \(a+b>2\sqrt{ab}\Leftrightarrow 2(a+b)> (\sqrt{a}+\sqrt{b})^2\)

\(\Rightarrow \sqrt{2(a+b)}> \sqrt{a}+\sqrt{b}\).

Áp dụng BĐT trên:

\(\sqrt{2}+\sqrt{6}< \sqrt{2(2+6)}=4\)

\(\sqrt{12}+\sqrt{20}< \sqrt{2(12+20)}=8\)

\(\sqrt{30}+\sqrt{42}< \sqrt{2(30+42)}=12\)

Cộng theo vế:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< 8+4+12=24\) (đpcm)

6 tháng 10 2016

Cái này thì....mình mù tịt

Vì chưa học!!!!

Ai đồng ý thì cho mình xin 1 k!!!

6 tháng 10 2016

hazz... có bạn HSG nào giải giúp ko

17 tháng 9 2015

\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{30}+\sqrt{42}<\sqrt{4}+\sqrt{9}+\sqrt{16}+\sqrt{36}+\sqrt{49}=2+3+4+6+7=22<24\)

Bài mở đầu cho ngày mới 

29 tháng 5 2017

Mk làm đc có 3 câu thôi.

Hỏi đáp Toán

Hỏi đáp Toán

29 tháng 5 2017

D = (4\(\sqrt{10}\) - 4\(\sqrt{6}\) + 5\(\sqrt{6}\) - 3\(\sqrt{10}\) )\(\sqrt{4-\sqrt{15}}\)

D = (\(\sqrt{10}\) + \(\sqrt{6}\) )\(\sqrt{4-\sqrt{15}}\)

D = \(\sqrt{\left(4-\sqrt{15}\right)10}\) + \(\sqrt{\left(4-\sqrt{15}\right)6}\)

D = \(\sqrt{40-10\sqrt{15}}\) + \(\sqrt{24-6\sqrt{15}}\)

D = \(\sqrt{\left(\sqrt{15}\right)^2-2.5.\sqrt{5}+5^2}\) + \(\sqrt{\left(\sqrt{15}\right)^2-2.3.\sqrt{15}+3^2}\)

D = \(\sqrt{\left(\sqrt{15}-5\right)^2}\) + \(\sqrt{\left(\sqrt{15}-3\right)^2}\)

D = 5 - \(\sqrt{15}\) + \(\sqrt{15}\) - 3 = 2