Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)
\(\Leftrightarrow (x+y)\left(\frac{1}{xy}+\frac{1}{z(x+y+z)}\right)=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y).\frac{z(y+z)+x(z+y)}{xyz(x+y+z)}=0\)
\(\Leftrightarrow \frac{(x+y)(z+x)(z+y)}{xyz(x+y+z)}=0\Rightarrow (x+y)(y+z)(x+z)=0\)
\(\Rightarrow \left[\begin{matrix} x=-y\\ y=-z\\ z=-x\end{matrix}\right.\)
Không mất tổng quát, giả sử \(x=-y\):
\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{(-y)^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{(-y)^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
Do đó: \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\) (đpcm)
\(x;y;z\ne0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\xy=-z\left(x+y+z\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\xy+xz+yz+z^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\\left(x+z\right)\left(y+z\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
- Với \(x=-y\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
\(\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)
2 trường hợp còn lại tương tự
\(\dfrac{xy+xz+yz}{xyz}=\dfrac{1}{x+y+z}\)
\(\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\)
\(x^2y+xy^2+xyz+x^2z+xyz+xz^2+xyz+y^2z+z^2y=xyz\)
\(x^2\left(y+z\right)+xy\left(y+z\right)+xz\left(z+y\right)+yz\left(y+z\right)=0\)
\(\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)
\(\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)
\(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+z^{2003}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
(x+y+z)(xy+yz+xz)=xyz
google seach
ta suy ra
(x+y)(y+z)(z+x)=0
\(x=-y\)
\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
suy ra \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)
Làm tương tự với các TH x= -z và y= -z
Từ đó ta được điều phải cm
a. \(\frac{x-15}{2000}+\frac{x-14}{2001}+\frac{x-13}{2003}=\frac{x-12}{2003}+2\)
\(\rightarrow\frac{x}{2000}-\frac{15}{2000}+\frac{x}{2001}-\frac{14}{2001}+\frac{x}{2003}-\frac{13}{2003}=\frac{x}{2003}-\frac{12}{2003}+2\)
\(\rightarrow x.\left(\frac{1}{2000}+\frac{1}{2001}\right)=\frac{15}{2000}+\frac{14}{2001}+\frac{13}{2003}-\frac{12}{2003}+2\)
\(\rightarrow x=2015,5\)
b. \(\left(x^2-6x+11\right)\left(y^2+2y+4\right)=2+4z-z^2\)
\(\rightarrow\left\{{}\begin{matrix}x^2-6x+11=\left(x-3\right)^2+2\ge2\\y^2+2y+4=\left(y+1\right)^2+3\ge3\\2+4z-z^2=-\left(z-2\right)^2+6\le6\end{matrix}\right.\)
\(\rightarrow\left(x^2-6x+11\right)\left(y^2+2y+4\right)\ge6\)
\(\rightarrow\left(x^2-6x+11\right)\left(y^2+2y+4\right)=2+4z-z^2\)
\(\rightarrow\left\{{}\begin{matrix}x=3\\y=-1\\z=2\end{matrix}\right.\)
y lẻ ➝ 2003y chia 3 dư 2. Mà x3+x2x+1 chia 3 dư 0 hoặc 1 (Tự cm)(Mâu thuẫn) Do đó y chẵn => 2003y là số chính phương =>x3+x2+x+1 là số chính phương. Cm x+1 và x2+1 cùng là số cp( nguyên tố cùng nhau) Mà x2 và x2+1 là 2 số chính phương liên tiếp => x^2=0 => x=0 thay vào được y=0