Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = dư 1 (chia cho 3) và b^2 = dư 1(chia cho 3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = dư 2 ( chia 3) nhưng c^2 = dư 1 (chia 3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = dư 1(chia 4) và b^2 = dư 1(chia 4) => a^2 + b^2 = dư 2(chia 4) nhưng c^2 = dư 1 ( chia 4) => mâu thuẫn
vậy có ít nhất 1 số chia hết cho 4
+ tương tự a^2 = 1 dư 1 (chia 5) hoạc a^2 = dư -1 (chia 5) hoạc a^2= dư 4 (chia 5) ;
và -1 + 1 = 0 , 1 + 4 = 5 , -1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Ở đây không nhất thiết cứ phải mỗi số phải chia hết cho 3,4,5 ,, có thể có số vừa chia hết ch0 3,4 ; cho 4,5 hoặc cho 5,3
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60..
=> ĐPCM
Bài làm có sử dụng các bổ đề: số chính phương chia 3 dư 0 hoặc 1. Số chính phương chia 5 dư 0, 1 hoặc 4. Số chính phương chia hết cho p (p là số nguyên tố) thì phải chia hết cho p².
~~~~~~~~~
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*)
b) - Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4.
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N)
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí)
Vậy trường hợp a, b cùng lẻ không xảy ra.
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N).
=> a² + b² = c²
<=> (2m + 1)² + (2n)² = (2p + 1)²
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1
<=> n² = p² + p - m² - m
<=> n² = p(p + 1) - m(m + 1).
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4.
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4.
Vậy abc chia hết cho 4 (**)
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***)
Từ (*), (**), (***), mà 3, 4, 5 đôi một nguyên tố cùng nhau => abc chia hết cho 3.4.5 hay abc chia hết cho 60 => abc chia het cho 3
~~~~~~
Chúc bạn học giỏi!
\(\left(a^2+b^2+c^2\right)⋮4\)
\(\Rightarrow\left(a^2+b^2+c^2\right)⋮2^2\)
\(\Rightarrow\left(a^2+b^2+c^2\right)⋮2\)
\(\Rightarrow\hept{\begin{cases}a^2⋮2\\b^2⋮2\\c^2⋮2\end{cases}\Rightarrow}\hept{\begin{cases}a⋮2\\b⋮2\\c⋮2\end{cases}}\)
Vậy a,b,c đồng thời chia hết cho 2
* Note: Bạn Greninja làm sai rồi, \(a^2+b^2+c^2⋮2\)chưa thể khẳng định \(a^2,b^2,c^2⋮2\)vì trong ba số a,b,c có thể tồn tại 1 số chẵn, 2 số lẻ. Phản ví dụ sau [a,b,c] = [1,2,3]. a,c lẻ mà \(a^2+b^2+c^2⋮2\)đấy thôi. Sau đây là lời giải của mình, bạn tham khảo:
Ta dễ có số chính phương chia 4 chỉ có thể dư 0 hoặc 1 (Cái này cơ bản, có nhiều trên mạng, hay các loại sách nâng cao)
Xét các trường hợp số dư: 0 + 0 + 1, 0 + 1 + 1, 1 + 0 + 1,... chỉ có trường hợp số dư 0 + 0 + 0 thỏa mãn, như vậy \(a^2,b^2,c^2⋮4\Rightarrow a,b,c⋮2\)(đpcm)
do tổng \(a^2+b^2+c^2\)là một số chẵn nên
hoặc cả 3 số là số chẵn
hoặc trong đó có 1 số chẵn và 2 số lẻ
TH1: cả 3 số là số chẵn nên hiển nhiên ta có \(a,b,c\)phải chia hết cho 2
TH2: trong đó có 1 số chẵn và 2 số lẻ
không mất tổng quát ta giả sử \(a=2n+1;b=2m+1,c=2k\) với m,n ,k là các số nguyên
khi đó \(a^2+b^2+c^2=4\left(m^2+n^2+k^2\right)+4\left(m+n\right)+2\)không thể chia hết cho 4
vì vậy TH3 không tồn tại hay ta có đpcm
Đối với lớp 8 cái này khó; giải theo cách bình thường nha
+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3
\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\) chia 3 dư 2
Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮3\) (1)
+) Giả sử \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4
\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2
Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai
Vậy \(abc⋮4\)(2)
+) +) Giả sử \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5
\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5
Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮5\)(3)
Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)
Ta có; 60 = 3.4.5
Đặt M = abc
Nếu a, b, c đều không chia hết cho 3 => a2, b2 và c2 chia hết cho 3 đều dư 1=> a2 khác b2 + c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M \(⋮\)3
Nếu a, b, c đều không chia hết cho 5 => a2, b2 và c2 chia 5 dư 1 hoặc 4
=> b2 + c2 chia 5 thì dư 2; 0 hoặc 3.
=> a2 khác b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5
Nếu a, b, c là các số lẻ => b2 và c2 chia hết cho 4 dư 1.
=> b2 + c2 = 4 dư 1 => a2 khác b2 + c2
Do đó 1 trong 2 số a, b phải là số chẵn
Giả sử b là số chẵn
Nếu c là số chẵn => M \(⋮\) 4
Nếu c là số lẻ mà a2 = b2 + c2 => a là số lẻ
\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)
\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)
Vậy M = abc \(⋮\)3 . 4. 5 = 60
Giúp mk nhé các bn mk cần gấp lắm