Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có ; X = x1 n1+x2 n2+ x3+ n3+...+xk nk
N
<=> qX = q (x1 n1+x2 n2 + x3 n3 +...+ xk nk )
N
= ( qx1)n1+(qx2)n2 +( qx3)n3+...+(qxk)nk
N
Giả sử giá trị của dấu hiệu là x, tần số của giá trị là n, số cộng thêm là a.
Ta có: Số trung bình cộng ban đầu là:
X¯¯¯¯=x1.n1+x2.n2+...+xk.nkNX¯=x1.n1+x2.n2+...+xk.nkN
Số trung bình cộng sau khi cộng thêm a là:
X′¯¯¯¯¯¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkNX′¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkN
X′¯¯¯¯¯¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkNX′¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkN
=(x1.n1+x2.n2+...+xk.nk)N+a.NN=(x1.n1+x2.n2+...+xk.nk)N+a.NN
(vì tổng các tần số n1+n2+...+nk=Nn1+n2+...+nk=N)
Nên X′¯¯¯¯¯¯=X¯¯¯¯+aX′¯=X¯+a
Vậy số trung bình cộng cũng được cộng thêm với số đó. (đpcm)
sorry mình học lớp 5 nên không trả lời cho bạn được.Nhưng hình nền bạn đặt rất đẹp và dễ thương.
Gỉa sử ta có bảng "tần số"
Giá trị(x) | a | b | c | |
Tần số(n) | n1 | n2 | n3 | N |
X =\(\frac{a\cdot n1+b\cdot n2+c\cdot n3}{N}\)
Cộng các giá trị của dấu hiệu với cùng 1 số
VD:Cộng với p
X Mới =\(\frac{\left(a+p\right)\cdot n+\left(b+p\right)\cdot n2+\left(c+p\right)\cdot n3}{N}\)
X mới =\(\frac{a\cdot n1+p\cdot n1+b\cdot n2+p\cdot n2+c\cdot n3+p\cdot n3}{N}\)
X mới =\(\frac{\left(a\cdot n1+b\cdot n2+c\cdot n3\right)+\left(p\cdot n1+p\cdot n2+p\cdot n3\right)}{N}\)
X mới =\(\frac{a\cdot n1+b\cdot n1+c\cdot n1}{N}\)+\(\frac{n\cdot\left(n1+n2+n3\right)}{N}\)
X mới = X +\(\frac{P\cdot N}{N}\)
X mới = X +P (điều phải chứng minh)
Ta có : \(\overline{x}=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}\)với \(N=n_1+n_2+...+n_k\)
Ta cần chứng minh : \(\frac{n_1\left(x_1+a\right)+n_2\left(x_2+a\right)+...+n_k\left(x_k+a\right)}{N}=\overline{x}+a\)
Thật vậy : \(\overline{x}+a=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}+a=\frac{x_1n_1+x_2n_2+...+x_kn_k+aN}{N}\)
\(=\frac{x_1n_1+x_2n_2+...+x_kn_k+an_1+an_2+...+an_k}{N}\)
\(=\frac{n_1\left(x_1+a\right)+n_2\left(x_2+a\right)+...+n_k\left(x_k+a\right)}{N}\)
Giải
Ta có :
\(\overline{X}=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}\)
Với N = \(n_1+n_2+....n_k.\)
a) \(=\frac{n_1\left(x_1+a\right)+n_2\left(x_2+a\right)+...+n_k\left(x_k+a\right)}{N}=\overline{X+a.}\)
Thật vậy :
\(\overline{X}+a=\frac{x_1n_1+x_2n_2+...+x_kn_k}{N}+a=\frac{x_1n_1+x_2n_2+...+x_kk_k+aN}{N}\)
\(=\frac{x_1n_1+x_2n_2+...+x_k+n_k+an_1+an_2+...+an_k}{N}\)
\(=\frac{n_1\left(x_1+a\right)+n_2\left(x_2+a\right)+...+n_k\left(x_k+a\right)}{N}\)
Trường hợp trừ cũng chứng minh như cộng