K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

ta gọi 4 số cần tìm là a,b,c,d 
ta có 
b = a + 1 
c = a + 2 
d = a + 3 
và tích hai số sau lớn hơn tích hai số đầu là 34 
.=> cd - ab = 34 => (a + 2)(a + 3) - a(a + 1) = 34 
=> a² + 5a + 6 - a² - a = 34 
=> 4a = 28 => a = 7 
vậy các số cần tìm là a= 7 b = 8 c = 9 d = 10

HÌ.MK LÀM Z ĐÓ.NẾU ĐÚNG TIK NHA

13 tháng 7 2016

Bạn ơi hình như bạn nhầm rùi, bài bắt chứng minh mà ^ ^

 

16 tháng 6 2015

a + b +c = 2P => b+ c = 2P -a 

=> ( b +c )^2 =( 2P -a )^ 2 => b^2 +c^2 +2bc = 4P^2 - 4Pa + a^2

      = 2bc +  b^2 +c^2 - a^2 = 4P( P -a ) => ĐPCM

10 tháng 6 2016

4p(p-a)=2p(2p-2a)=(a+b+c)(b+c-a)=-a^2+b^2+2bc+c^2=VT=>đpcm

2 tháng 7 2016

Xét \(VP=4p.\left(p-a\right)=2p.2.\left(p-a\right)=2p.\left(2p-2a\right)=\left(a+b+c\right)\left(b+c-a\right)\)

\(ab+ac-a^2+b^2+bc-ab+bc+c^2-ac=2bc+b^2+c^2-a^2=VT\)

Vậy ta có đpcm

2 tháng 7 2016

2bc+b^2+c^2-a^2=(b+c)^2-a^2=(b+c-a)(b+c+a)=(2p-a-a)2p=(2p-2a)2p=2.2p(p-a)=4p(p-a)

\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

Ta có:VT=\(\left(b+c\right)^2-a^2=\)\(\left(b+c-a\right)\left(a+b+c\right)=2p\left(2p-2a\right)\)

=\(4p\left(p-a\right)\)=VP

Vậy\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

5 tháng 9 2017

Mộc Lung Hoađề bài

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)

\(=2p\cdot\left(2p-a-a\right)\)

\(=4p\left(p-a\right)\)

26 tháng 6 2015

      a+b +c = 2p 

 =>  b +c = 2p - a

=>  ( b + c)^2  = ( 2p -a)^2

=> b^2 + 2bc + c^2 = 4p^2 - 4ap + a^2

=> 2bc + b^2 + c^2 - a^2 = 4p^2 - 4ap

=> 2bc + b^2 + c^2 - a^2 = 4p ( p-a) 

=> ĐPCM 

( Xem lại đè = 4p(p - a) chứ không phải 4b( p-a)

bạn ơi đề có sai ko j?

bạn ơi đề có sai ko j?

7 tháng 8 2015

Vế phải =  (b + c)- a= (b + c - a). (b +c + a) =  (2p -a - a).2p = 2.(p -a).2p = 4p. (p- a) = Vế trái

vậy...

7 tháng 8 2015

bạn vào câu hỏi tương tự nhé  ^^

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Bài 1:
Ta có:

\(b^2+c^2-a^2+2bc=(b^2+2bc+c^2)-a^2\)

\(=(b+c)^2-a^2=(2p-a)^2-a^2\) (do \(a+b+c=2p\) )

\(=4p^2-4pa+a^2-a^2=4p^2-4pa=4p(p-a)\)

Do đó ta có đpcm.

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Bài 2:

Dấu \(\Leftrightarrow \) thể hiện bài toán đúng trong cả 2 chiều.

Ta có: \(5a+2b\vdots 17\)

\(\Leftrightarrow 2(5a+2b)\vdots 17\)

\(\Leftrightarrow 10a+4b\vdots 17\)

\(\Leftrightarrow 10a+4b+17a+17b\vdots 17\)

\(\Leftrightarrow 27a+21b\vdots 17\)

\(\Leftrightarrow 3(9a+7b)\vdots 17\)

\(\Leftrightarrow 9a+7b\vdots 17\) (do 3 và 17 nguyên tố cùng nhau)

Ta có đpcm.