Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)
\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)
\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)
\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)
\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)
\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)
1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3
2) với bửu thức (II) A là tổng hai số hạng
số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5
số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5
KL
Với (I) A chia hết cho 2&3
Với (II) A chia hết cho 5
(I)&(II)=> điều bạn muốn tìm
\(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2+1\right)\left(n^2-1\right)+5n\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\) chia hết cho 5
\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)
\(=\left(n^3+n\right)\left(n^2+4\right)\)
\(=n^5+4n+5n^3\)
\(=n^5-n+5n+5n^3\)
Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)