Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Vì \(n\in Z\) nên \(n\left(n-1\right)\left(n+1\right)\)là tích 3 số nguyên liên tiếp
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\) (vì chia hết cho 2 và 3)
Mà 12n chia hết cho 6.
Do đó: \(n^3-13n=n\left(n-1\right)\left(n+1\right)-12n⋮6\)
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)
\(A=x\cdot\left(-1\right)\cdot x\)
\(A=-x^2\)
b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)
Xét :
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)
\(\frac{x}{8}=6\Leftrightarrow x=48\)
\(\frac{y}{12}=6\Leftrightarrow y=72\)
\(\frac{z}{15}=6\Leftrightarrow z=90\)
\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)
ta có
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)
ta lại có
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)
\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)
ta kết hợp (1) và (2)
\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)
theo tính chất dãy tỉ số = nhau
có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)
thay vào
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3=3^n.3.5.2+2^{n+1}.2.3\)\(=\left(5.3^n+2^{n+1}\right).6⋮6\)
Vậy .............
Ta có: 3n+3+3n+1+2n+3+2n+2=3n(33+3)+2n+1(22+2)=3n.30+2n+1.6=6.(3n.5+2n+1) => Chia hết cho 6 với mọi n
Có ai đọc câu hỏi ko vậy? hay đọc mà thiếu chữ quy nạp :((
A = n3-n - 12n= n(n2-1)-12n=n(n-1)(n+1)-12n
ta có 12n chia hết 6
n(n-1)(n+1) là tích 3 số nguyên liên tiếp chia hết cho 6. Vậy a chia hết cho 6
nhớ k cho mik nhá
Ta có :\(n^3-13n\)
\(=\left(n^3-n\right)-12n\)
\(=n\left(n^2-1\right)-6\left(2n\right)\)
\(=\left(n-1\right)n\left(n+1\right)-6\left(2n\right)\)
Vì (n-1);n;n+1 là ba số tự nhiên liên tiếp =>(n-1)n(n+1)\(⋮\)2 và 3;
=>(n-1)n(n+1)\(⋮\)6
Mà 6(2n)\(⋮\)6
=>(n-1)n(n+1)-6(2n)\(⋮6\)
\(\Rightarrow n^3-13n⋮6\)