K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

Câu hỏi tương tự          

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

12 tháng 11 2015

C = 10n + 18n -28

+với n =1 => C =10+18 -28 =0 chia  hết cho 9

+ Giả sử C chia hết cho 9  với  n-1

  => C =10n-1 + 18(n-1) -28 chia hết cho 9

+ Ta chứng minh C  chia hết cho 9 đúng với n

C= [10n +18n -28 = 10.10n-1 +18(n -1).10  -280 ] +(162n +432)

  =10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9

=> dpcm

13 tháng 3 2017

 C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27) 
Ta có: 27n - 27 chia hết cho 27 (1) 
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm) 

C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27. 
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27. 
=> 10^k + 18k - 28 = 27m (m là số nguyên) 
=> 10k = 27m -18k + 28 (1) 
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2) 
Thay (1) vào (2), ta được: 
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm

25 tháng 8 2017

sai cách cm quy nạp rùi bạn ơi

4 tháng 5 2018

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.

Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.

Do đó5n(n-1)(n+1) \(⋮30\)

Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.

Do đó n5-n chia hết cho 30

4 tháng 5 2018

\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

=> \(A⋮16\)

Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24

=> A\(A⋮384\)

17 tháng 10 2015

Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3

=> A chia hết cho 3

=> 9.A chia hết cho 27

=>9.A-27 chia hết cho 27

=>10^n + 18n -28 chia hết cho 27

=>ĐPCM

17 tháng 10 2015

mk cx k giải đk bài này 

29 tháng 8 2019

Chứng minh A= 10 ^n + 18n - 1 chia hết cho 27

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)