K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!

 

28 tháng 7 2023

a) \(M=3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(M=3\sqrt{3}-2\sqrt{3}-\left|\sqrt{3}-1\right|\)

\(M=\sqrt{3}-\sqrt{3}+1\)

\(M=1\)

b) Ta có:

\(N=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(N=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(N=\left(\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(N=\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\)

\(N=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Theo đề ta có: \(M=2N\)

Khi: \(1=2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\)

\(\Leftrightarrow1=\dfrac{2\sqrt{a}-2}{\sqrt{a}}\)

\(\Leftrightarrow\sqrt{a}=2\sqrt{a}-2\)

\(\Leftrightarrow2\sqrt{a}-\sqrt{a}=2\)

\(\Leftrightarrow\sqrt{a}=2\)

\(\Leftrightarrow a=4\left(tm\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

1) Ta có: \(N=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

2) Để N=-2016 thì 1-a=-2016

\(\Leftrightarrow1-a+2016=0\)

\(\Leftrightarrow2017-a=0\)

hay a=2017(thỏa ĐK)

Vậy: Để N=-2016 thì a=2017

NV
12 tháng 4 2021

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^3+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\) \(\Rightarrow a+b=7\)