K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\ \dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\ .........\\ \dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+....+\dfrac{1}{\sqrt{100}}\)( 100 phân số \(\dfrac{1}{\sqrt{100}}\) )

hay \(A>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}\)(100 phân số \(\dfrac{1}{10}\) )

\(\Rightarrow A>\dfrac{100}{10}\\ \Rightarrow A>10\)

KL : Vậy ....

26 tháng 5 2018

cmr...............................

3 tháng 10 2017

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)

\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)

Suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)

\(\)\(linh>10\left(đpcm\right)\)

Bài này ko phải 100 nhé

3 tháng 10 2017

bạn nào giải giúp mình vớikhocroi

10 tháng 3 2017

Ta có:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(...............\)

\(\dfrac{1}{\sqrt{98}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

Cộng theo vế ta có:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{99}{10}\)

Lại có \(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\) suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{100}{10}=10\)

1 tháng 10 2017

Ta có:

1/√1>1/√100=1/10

1/√2>1/√100=1/10

........

1/√100=1/√100=1/10

Nên:

1/√1+1/√2+...+1/√100>1/10+1/10+...+1/10(100 phân số 1/10)

=1/√1+1/√2+..+1/√100>100/10

1/√1+1/√2+..+1/√100>10(đpcm)

30 tháng 10 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

.........................................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+..........+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}=\dfrac{1}{10}.100=10\left(đpcm\right)\)

30 tháng 10 2018

Ta có:
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

29 tháng 3 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

.............................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.........+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+.....+\dfrac{1}{10}=\dfrac{100}{10}=10\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)

2 tháng 1 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{`100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

........................................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.......+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+........+\dfrac{1}{10}=\dfrac{100}{10}=10\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)

2 tháng 1 2018

Giải:

Ta thấy:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

...................................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}.\)

\(>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}.\)
\(=\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\) (100 số hạng \(\dfrac{1}{10}\)).

\(=\dfrac{100}{10}=10.\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right).\)

Vậy..........

2 tháng 4 2017

nhớ tìm kiếm trước khi hỏi

2 tháng 4 2017

Ta có:

\(\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{3}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)

\(.............................\)

\(\sqrt{99}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{100}=\sqrt{100}\Rightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

Cộng từng vế của các BĐT trên ta được:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(=\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)

Vậy \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\) (Đpcm)

5 tháng 5 2018

Ta có:

1/ căn 1> 1/10

1/ căn 2> 1/10

...

1/ căn 99> 1/10

1/ căn 100 = 1/10

=> 1/ căn 1 + 1/ căn 2 + ... + 1/ căn 99 + 1/ căn 100 > 100 . 1/10 = 10 (đpcm)

6 tháng 5 2018

1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

3 tháng 7 2017

\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

Ta có : \(6< 6.25\Rightarrow\sqrt{6}< \sqrt{6.25}\Rightarrow\sqrt{6}< 2.5\)

\(12< 12.25\Rightarrow\sqrt{12}< \sqrt{12.25}\Rightarrow\sqrt{12}< 3.5\)

\(20< 20.25\Rightarrow\sqrt{20}< \sqrt{20.25}\Rightarrow\sqrt{20}< 4.5\)

\(30< 30.25\Rightarrow\sqrt{30}< \sqrt{30.25}\Rightarrow\sqrt{30}< 5.5\)

\(42< 42.25\Rightarrow\sqrt{42}< \sqrt{42.25}\Rightarrow\sqrt{42}< 6.5\)

\(50< 56.5\Rightarrow\sqrt{50}< \sqrt{56.25}\Rightarrow\sqrt{50}< 7.5\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 2.5+3.5+4.5+5.5+6.5+7.5\)

\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

3 tháng 7 2017

\(\)\(\text{a) }\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

Ta có : \(1< 9\Rightarrow\sqrt{1}< \sqrt{9}\Rightarrow\sqrt{1}< 3\)

\(2< 9\Rightarrow\sqrt{2}< \sqrt{9}\Rightarrow\sqrt{2}< 3\)

\(3< 9\Rightarrow\sqrt{3}< \sqrt{9}\Rightarrow\sqrt{3}< 3\)

\(...\)

\(8< 9\Rightarrow\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3+3+...+3_{\left(\text{8 số hạng 3}\right)}\) \(\) \(\)

\(\) \(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3\cdot8\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

\(\text{b) }\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

Ta có : \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}< \dfrac{1}{\sqrt{100}}\)

\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}< \dfrac{1}{\sqrt{100}}\)

\(...\)

\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}_{\left(\text{100 số hạng}\dfrac{1}{\sqrt{100}}\right)}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}\cdot100\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{10}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\) \(\left(ĐPCM\right)\)

Vậy \(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

\(\)