Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử cả 3 số đều nguyên tố.
Ta thấy: $a+5-a=5$ lẻ nên $a,a+5$ khác tính chẵn lẻ. Tức là 1 trong 2 số sẽ nhận giá trị chẵn.
Mà $a,a+5$ là số nguyên tố, $a<a+5$ nên $a$ nhận giá trị chẵn bằng $2$ (vì 2 là snt chẵn duy nhất)
Khi đó: $a+10=2+10=12$ không là số nguyên tố (trái với giả sử)
Vậy điều giả sử là sai.
Tức là trong 3 số có ít nhất 1 số là hợp số.
TH1: n là số chẵn
\(\Rightarrow\)( n + 7 ) là số lẻ
\(\Rightarrow\)n.( n + 7 ) là số chẵn ( vì chẵn \(\times\) lẻ \(=\) chẵn )
TH2: n là số lẻ
\(\Rightarrow\)( n + 7 ) là số chẵn
\(\Rightarrow\)n.( n + 7 ) là số chẵn ( vì lẻ \(\times\)chẵn \(=\)chẵn )
Vậy n. ( n + 7 ) là số chẵn với mọi \(n\in N\)
a) Từ 1 đến 9 có : (9-1):1+1=9 số. Mỗi số có 1 chữ số
Từ 10 đến 53 có : (53-10):1+1=44. Mỗi số có 2 chữ số
Vậy A có số các chữ số là : 9.1+44.2=97 (chữ số)
a, 2 số tự nhiên liên tiếp thì 1 trong 2 số luôn là số chẵn . Vì khi số chẵn nhân với số lẻ là số chẵn gấp lên nhiều lần nên sẽ là số chẵn (Vì số chẵn khi cộng với nhiều lần chính nó vẫn ra là số chẵn).
b , Tương tự như a khi số lẻ nhân với số chẵn vẫn ra số chẵn . Nếu n là số lẻ thì n+5 là số chẵn mà số lẻ nhân với số chẵn ra số chẵn nên n . ( n+5 ) là số chẵn . Nếu n là số chẵn thì n vẫn là số chẵn mà số lẻ nhân với số chẵn nên n . (n+5) là số chẵn .
Vậy mọi trường hợp n. ( n+5 ) với n là số tự nhiên đều ra số chẵn .
đáp số
A = { 18 , 20 , 22 }
B = { 20 , 28 , 29 , 31 }
hok tốt
|a| + a
ta có :
|a| = a hoặc |a| = - a
th1 :
|a| = a
=> |a| + a = a + a = 2a \(⋮\) 2
=> |a| + a là số chắn
th2 :
|a| = -a
=> |a| + a = -a + a = 0 \(⋮\) 2
=> |a| + a là số chẵn
vậy |a| + a là số chẵn \(\forall\) a thuộc Z
thanks