Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100
1-1/100<1
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Cho:A=1/1x2+1/3x4+....+1/99x100
CMR:7/12<A<5/6
Ta có:
A= 1/1x2 +1/3x4 +1/5x6 +...+ 1/99x100
A= 1-1/2 + 1/3 - 1/4 + 1/5 -1/6 +...+ 1/99-1/100
A= 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +...+1/99 + 1/100 - 2.1/2 - 2.1/4 - ... - 2.1/98
A= 1 + ... + 1/100 - 1 - 1/2 - 1/3 - ... - 1/49
A= 1/51 + ... + 1/100
=> A < 1/51.25 = 25/51 < 25/30 = 5/6 => đpcm
Và : A > 25x1/75 + 25x1/100 = 7/12
Ta có:
A= 1/1x2 +1/3x4 +1/5x6 +...+ 1/99x100
A= 1-1/2 + 1/3 - 1/4 + 1/5 -1/6 +...+ 1/99-1/100
A= 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +...+1/99 + 1/100 - 2.1/2 - 2.1/4 - ... - 2.1/98
A= 1 + ... + 1/100 - 1 - 1/2 - 1/3 - ... - 1/49
A= 1/51 + ... + 1/100
=> A < 1/51.25 = 25/51 < 25/30 = 5/6 => đpcm
Và : A > 25x1/75 + 25x1/100 = 7/12
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)