K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Tìm Nick đăng nhập tên Vũ Đặng Anh Thi 

Nếu là "BÀ GIÀ" đang only thì trả lời câu hỏi này nha

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

26 tháng 5 2021

Nếu n chẵn 

=> Đặt n = 2k (k \(\inℕ\))

B = (3n + 17)(7n + 19) 

= (3.2k + 17)(7.2k + 19)

= (6k + 17)(14k + 19) => B không chia hết cho 2

Nếu n lẻ 

=> Đặt n = 2x + 1

=> B = (3n + 17)(7n + 19)

= [3(2k + 1) + 17].[7(2x  +1) + 19]

= (6k  + 20)(14k + 26)

= 2(3k + 10)(14k + 26) \(⋮\)2

=> B \(⋮\)2 <=> n lẻ 

10 tháng 11 2018

ui mình cũng đang mắc phải bài này......huhu

10 tháng 11 2018

Câu hỏi của Nghị Hoàng - Toán lớp 6 - Học toán với OnlineMath tham khảo

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:
Vì $7^n$ không chia hết cho $3$ với mọi $n\in\mathbb{N}$ nên $7^n$ có dạng $3k+1$ hoặc $3k+2$ với $k\in\mathbb{N}$

Nếu $7^n=3k+1$ thì:

$(7^n+1)(7^n+2)=(3k+2)(3k+3)=3(3k+2)(k+1)\vdots 3(1)$

Nếu $7^n=3k+2$ thì:

$(7^n+1)(7^n+2)=(3k+3)(3k+4)=3(k+1)(3k+4)\vdots 3(2)$

Từ $(1);(2)$ suy ra $(7^n+1)(7^n+2)$ luôn chia hết cho $3$

26 tháng 11 2016

Đặt A= n x (2n + 7) x (7n + 7)

Ta có: A= (2n2+7n) x (7n+7)

=> A=14n3+49n2+14n2+49n

=> A=49n(n+1)+14n2(n+1)

=> A= (n+1).63n2

Ủa nên xem lại đề bạn ạ!

21 tháng 5 2017

Vì n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)3         (1)

n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)2              (2)

Từ (1),(2) mà ƯCLN(3,2) = 1\(\Rightarrow\)n (n+1)(n+2) \(⋮\)6\(\Rightarrow\)​7n (n+1)(n+2)\(⋮\)6; 7n (n+1)(n+2)\(⋮\)7 mà ƯCLN (6,7)=1

\(\Rightarrow\)7n (n+1)(n+2)\(⋮\)42

17 tháng 4 2018

khó quá