Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(9a+5b+3\right)⋮17\Leftrightarrow4\left(9a+5b+3\right)⋮17\)
\(\Leftrightarrow\left(36a-2.17a+20b-17b+12-17\right)⋮17\)
\(\Leftrightarrow\left(2a+3b-5\right)⋮17\)
a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7
vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7
vì 17 không chia hết cho7 nên b phải chia hết cho 7
5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7
a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7
vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7
vì 17 không chia hết cho7 nên a phải chia hết cho 7
vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7
b) tương tự như câu a
tích mình nhé Kim Chi !
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)
Có 2a+3b chia hết cho 17
=> 13.(2a+3b) chia hết cho 17 hay 26a+39b chia hết cho 17
Mà 17a và 34b đều chia hết cho 17
=> 26a+39b-17a-34b chia hết co 17 hay 9a+5b chia hết cho 17
=> ĐPCM
Điều ngược lại hoàn toàn đúng
k mk nha
Ta có:
2a + 3b = d
9a + 5b = c
=> 8a + 12b = 4d
9a + 5b = c
Ta có : 4d + c = (8a+9a ) +(12b+5b) = 17a + 17b = 17(a+b)
Vì d chia hết cho 17 => 4d chia hết cho 17 . Mà 4d + c chia hết 17 => c chia hết cho 17 hay 9a + 5b chia hết cho 17.
Điều ngược lại cũng đúng
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
xét hiệu : 5(2a+3b) - 3(9a+5b) = 10a+ 15b - 27a-15b
<=> 5(2a+3b) - 3(9a+5b) = -17a
vì -17 chia hết cho17 nên -17a chia hết cho 17
=> 5(2a+3b) - 3(9a+5b) chia hết cho 17 (1)
+) ta có: 2a + 3b chia hết cho 17
nên 5(2a+3b) chia hết cho 17 (2)
từ (1) và (2) => 3(9a+5b) chia hết cho 17
mà (3,17) = 1
=> 9a+5b chia hết cho 17
vậy nếu 2a+3b chia hết cho17 thì 9a+5b chia hết cho17
+) ngược lại ta có 9a+5b chia hết cho17
nên 3(9a+5b) chia hết cho17 (3)
từ (1) và (3) => 5(2a+3b) chia hết cho 17
mà (5,17)=1
=> 2a+3b chia hết cho 17
vậy nếu 9a+5b chia hết cho17 thì 2a+3b chia hết cho17
chứng tỏ nếu 2a+3b chia hết cho17 thì 9a+5b chia hết cho 17 và ngược lại
Xét tổng: 4(2a + 3b) + (9a + 5b) = 8a + 12b + 9a + 5b = 17a + 17b = 179a + b0 chia hết cho 17
=> 4(2a + 3b) + (9a + 5b) chia hết cho 17 (1)
+) Chứng minh theo chiều xuôi (tức là có 2a + 3b chia hết cho 17, cần chứng minh 9a + 5b chia hết cho 17)
Ta có: 2a + 3b chia hết cho 17 => 4(2a + 3b) chia hết cho 17, kết hợp vs (1) đc: 9a + 5b chia hết cho 17
+) Chứng minh theo chiều ngược (
tức là có 9a + 5b chia hết cho 17, cần chứng minh 2a + 3b chia hết cho 17)
Ta có: 9a + 5b chia hết cho 17, kết hợp vs (1) đc: 4(2a + 3b) chia hết cho 17, mà ƯCLN(4,17) = 1 => 2a + 3b chia hết cho 17
Vậy: Nếu 2a + 3b chia hết cho 17 thì 9a + 5b chia hết cho 17 và ngược lại