Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Giải:
Ta có: \(\left\{{}\begin{matrix}2222\equiv-4\left(\text{mod }7\right)\\5555\equiv4\left(\text{mod }7\right)\end{matrix}\right.\)
\(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}\) \(+4^{2222}\)
\(\equiv-4+4=0\left(\text{mod }7\right)\)
Mà \(\left(-4\right)^{5555}+4^{2222}=\left(-4\right)^{2222}\left(4^{3333}-1\right)\) \(⋮4^3-1=63⋮7\)
Vậy \(2222^{5555}+5555^{2222}⋮7\)
Bạn cần viết đề bài bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%B3+ba+g%C3%B3c+nh%E1%BB%8Dn+trung+tuy%E1%BA%BFn+AM+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+ch%E1%BB%A9ng+%C4%91i%E1%BB%83m+C+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AB+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AE++vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB+v%C3%A0+AE=AB+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+b%E1%BB%9D+ch%E1%BB%A9a+%C4%91i%E1%BB%83m+B+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AC+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AD+vunng+g%C3%B3c+v%E1%BB%9Bi+AC+v%C3%A0+AD+=Ac+a)+c/m+BD=CEb)+tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+MA+l%E1%BA%A5y+N+sao+cho+MN=MA.C/m+tam+gi%C3%A1c+ADE=tam+gi%C3%A1c+CANc)+g%E1%BB%8Di+I+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+DE+v%C3%A0+AM+c/m+(AD%5E2+IE%5E2)/DI%5E2+AE%5E2&id=412461
Đặt đa thức \(f\left(x\right)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+...+a_k\)(trong đó \(n\ge2\)và \(a_k\)là hệ số tự do)
\(\Rightarrow f\left(5\right)=a_0.5^n+a_1.5^{n-1}+a_2.5^{n-2}+...+a_k\)
Dễ thấy 5 là số nguyên tố nên các lũy thừa bậc n; n - 1; n - 2;... của 5 không chia hết cho 7.
Vậy để \(f\left(5\right)⋮7\)thì tất cả các hệ số chia hết cho 7 hay \(a_0;a_1;a_2;...;a_k⋮7\)(1)
Tương tự với \(f\left(7\right)⋮5\)ta có \(a_0;a_1;a_2;...;a_k⋮5\)(2)
Vì (5,7) = 1 nên từ (1) và (2) suy ra \(a_0;a_1;a_2;...;a_k⋮35\)
Lúc đó f(x) chia hết cho 35 với mọi x
Vậy f(12) chia hết cho 35 (đpcm)
a) Ta có A = 710 + 79 - 78
= 78( 72 + 7 - 1 )
= 78 . 55 ⋮ 11 vì 55 ⋮ 11
Vậy A ⋮ 11
b) Ta có B = 115 + 114 + 113
= 113( 112 + 11 + 1 )
= 113 . 133 ⋮ 7
Vậy B ⋮ 7
a,A=710+79-78=78(72+7-1)=78x55 ⋮11 vì 55⋮11
b,115+114+113=113(112+11+1)=113x133⋮7 vì 133⋮7
7^6 + 7^5 - 7^4
= 7^4.(7^2+7-1)
= 7^4. (49+7-1)
=7^4.55
Có 55 chia hết cho 55
Mà 7^4 thuộc n
Suy ra 7^4.55 chia hết cho 55
7^6 +7^5 -7^4 chia hết cho 55
Sửa đề: \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7
Ta có:
\(1961\text{≡}\left(mod7\right)\Rightarrow1961^{1962}\text{≡}1\left(mod7\right)\left(I\right)\)
Ta có:
\(3^6\text{≡}1\left(mod7\right)\Rightarrow\left(3^6\right)^{327}\text{≡}1\left(mod7\right)\)
\(\Rightarrow9.\left(3^6\right)^{327}\text{≡}9\text{≡}2\left(mod7\right)\Rightarrow3^{1964}\text{≡}2\left(mod7\right)\)
Mà \(1963\text{≡}3\left(mod7\right)\Rightarrow1963^{1964}\text{≡}3^{1964}\text{≡}2\left(mod7\right)\left(II\right)\)
Ta có:
\(1965\text{≡}5\left(mod7\right)\Rightarrow1965^{1966}\text{≡}5^{1966}\left(mod7\right)\)
Mà ta lại có: \(\hept{\begin{cases}5^6\text{≡}1\left(mod7\right)\\5^4\text{≡}2\left(mod7\right)\end{cases}\Rightarrow}\left(5^6\right)^{327}.5^4=5^{1966}\text{≡}2\left(mod7\right)\)
\(\Rightarrow1965^{1966}\text{≡}5^{1966}\text{≡}2\left(mod7\right)\left(III\right)\)
Từ (I), (II), (III) thì ra suy ra:
\(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}\left(1+2+2+2\right)\left(mod7\right)\)
Hay \(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}7\text{≡}0\left(mod7\right)\)
Vậy \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) Cộng lại ta có S ≡ 14 ≡ 0 (mod 7) Hay ta có đpcm