K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

Số số hạng của tổng:

$(2n-2-0):2+1=n$ 

$0+2+3+...+(2n-2)=\frac{(2n-2+0).n}{2}=\frac{2n(n-1)}{2}=n(n-1)$

Ta có đpcm.

2 tháng 6 2017

a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

 \(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )

\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)

Vậy \(N< \frac{1}{4}\)

b)  \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)

\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)

Vậy \(P< 1\)

2 tháng 6 2017

P<1 nha bn k nha

26 tháng 8 2016

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\)

\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right)2n}\)\(.\frac{1}{2}\)       Ta gọi là A

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}=\frac{1}{4}-\frac{1}{2n.2}\)

\(\Rightarrow M< \frac{1}{4}-\frac{1}{2n.2}< \frac{1}{4}\)

\(\Rightarrow M< \frac{1}{4}\left(Đpcm\right)\)

\(\)

 

 

22 tháng 7 2016

Ta có : 

\(N=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Ta thấy : \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

.......

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)

\(\Rightarrow\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< 1.\frac{1}{2^2}\)

\(\Rightarrow N< \frac{1}{4}\)(ĐPCM)

Ủng hộ mk nha !!! ^_^

NV
13 tháng 8 2021

\(S=a+a^3+...+a^{2n+1}\)

\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)

\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)

\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)

\(S_1=1+a^2+...+a^{2n}\)

\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)

\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)

\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)