K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

Ta thấy mẫu của dãy có dạng 1.5; 5.9; 9.13; 13.17; 17.21;... tổng quát là (4n-3)(4n+1). Mẫu thứ 100 bằng 397.401. Tổng của 100 số hạng đầu của dãy bằng:

\(\left(1-\dfrac{1}{401}\right):4=\dfrac{1}{4}-\dfrac{1}{1604}< \dfrac{1}{4}\)

28 tháng 7 2015

Tổng 100 số hạng đầu tiên của dãy trên là:


\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)

=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)

=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)

=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)

=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)

4 tháng 4 2019

làm sao để biết đc số cuối là số nào

23 tháng 8 2017

a)Câu a sai đề sửa lại: \(\dfrac{1}{5}\) thành \(\dfrac{1}{15}\) thì mới có quy luật nha

Ta có: \(\dfrac{1}{3}=\dfrac{1}{1.3};\dfrac{1}{15}=\dfrac{1}{3.5};\dfrac{1}{35}=\dfrac{1}{5.7};....\)

Gọi số thứ 2017 là \(\dfrac{1}{x.y}\) và x là số thứ nhất ở phần mẫu của số hạng thứ 2017 \(\left(x\in N;x>0\right)\); có:

\(\left(x-1\right):2+1=2017\Rightarrow\left(x-1\right):2=2016\Rightarrow x=4033\)

mà y=x+2=>y=4035

Vậy số thứ 2017 của dãy là \(\dfrac{1}{4033.4035}=\dfrac{1}{16273155}\)

23 tháng 8 2017

b) Ta có:

\(\dfrac{1}{5}=\dfrac{1}{1.5};\dfrac{1}{45}=\dfrac{1}{5.9};\dfrac{1}{117}=\dfrac{1}{9.13};...\)

Gọi số thứ 2017 là \(\dfrac{1}{x.y}\)và x là số thứ nhất ở phần mẫu của số hạng thứ 2017 (x,y∈N;x.y>0); có:

\(\left(x-1\right):4+1=2017\)

Tự tính ra x=8065 mà y=x+4=>y=8069

Vậy số thứ 2017 là \(\dfrac{1}{8065.8069}=\dfrac{1}{65076485}\)

11 tháng 8 2017

BT1: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{6}\)

Vậy ta suy ra đpcm

11 tháng 8 2017

1. Ta có :

\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}>\dfrac{1}{6}+\dfrac{1}{6}+.....+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}< \dfrac{1}{6}.5\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}< \dfrac{5}{6}\)

\(\rightarrowđpcm\)

21 tháng 4 2021

ta có   A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40  > 1/40 + 1/40 +....+ 1/40 ( có 20 số hạng 1/40)
              = 20/40
              =1/2
      =) A> 1/2   (1)
  ta lại có  A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40 < 1/20 + 1/20 +...+ 1/20 ( có 20 số hạng 1/20)
                    =20/20
                    =1
       =) A <1 (2)
từ (1), (2) = 1/2 <A<1

21 tháng 4 2021

tick cho mình bn ơi

13 tháng 6 2015

*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)

28 tháng 2 2016

Tổng 100 số hang đầu tiên của dãy là:

1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197

= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401

=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)

=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)

=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4

==> ĐPCM

28 tháng 2 2016

Tổng 100 số hang đầu tiên của dãy là:

1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197

= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401

=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)

=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)

=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4

==> ĐPCM

nhớ k cho mình nha