Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
..............................
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng vế với vế của 99 bất đẳng thức trên ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99\cdot\frac{1}{10}=\frac{99}{10}\)
=> A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}+\frac{1}{10}=\frac{100}{10}=10\)
Lớp 7 vừa học hằng đẳng thức, chú ý hằng đẳng thức sau: (a - b)(a + b) = a2 - b2.
Bạn cần khử căn dưới mẫu và cộng tổng bên trái, muốn vậy bạn phải đánh giá từng phân số bằng cách làm trội nó
Sử dụng đánh giá sau: \(\frac{1}{\sqrt{k}}>\frac{1}{\sqrt{k}+\sqrt{k-1}}=\sqrt{k}-\sqrt{k-1}\)
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{10}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=10\)(đpcm)
a) \(10\sqrt{0,01}.\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)
\(=10\sqrt{\frac{10}{100}}.\sqrt{\frac{4^2}{3^2}}+3.\sqrt{7^2}-\frac{1}{6}\sqrt{2^2}\)
\(=10.\frac{\sqrt{10}}{10}.\frac{4}{3}+3.7-\frac{1}{6}.2\)
\(=\frac{4\sqrt{10}}{3}+27-\frac{1}{3}\)
\(=\frac{4}{3}\sqrt{10}+\frac{80}{3}\)
b) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}\)
\(=\frac{17}{4800}\)
Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh
Câu 1 :
\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN
<=> 2(n - 1)2 + 3 có GTNN
Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3
=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1
Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1
Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
Khi đó : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}\)\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}\)(100 số hạng \(\frac{1}{\sqrt{100}}\))
\(=\frac{1}{\sqrt{100}}.100=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)(ĐPCM)