Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2017+x^2015+1=(x^2017-x)+(x^2015-x^2)+(x^2+x+1) (1)
Ta có:x^2017-x=x(x^2016-1)
Dễ thấy x^2016-1 chia hết cho x^3-1 hay chia hết cho x^2+x+1 suy ra x^2017-x chia hết cho x^2+x+1 (2)
Tương tự x^2015-x^2 chia hết cho x^2+x+1 (3)
và x^2+x+1 chia hết cho x^2+x+1 (4)
Từ (1)(2)(3)(4) ta có (đpcm).
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
c) x10 - 10x + 9
= x10 - x - 9x + 9
= x( x9 - 1) - 9( x - 1)
= x( x - 1)( x8 + x7 + x6 +...+ x + 1) - 9( x - 1)
= ( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9]
Do : ( x - 1) chia hết cho ( x- 1)( x - 1)
-->( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9] chia hết cho ( x - 1)2
Hay , x10 - 10x + 9 chia hết cho ( x - 1)2 , đpcm
d) 8x9 - 9x8 + 1
= 8x9 - 8x8 - x8 + 1
= 8x8( x - 1) - ( x8 - 1)
= 8x8( x - 1) - ( x - 1)( x7 + x6 +...+ x + 1)
= ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ]
Do : ( x - 1) chia hết cho ( x - 1)( x - 1)
--> ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ] chia hết cho ( x - 1)( x - 1)
Hay , 8x9 - 9x8 + 1 chia hết cho ( x - 1)2 , đpcm
Trước tiên sử dụng HĐT an-1=(a-1)(an-1+an-2+...+a2+a+1)
( nếu yêu cầu chứng minh ta biến đổi vế phải thành vế trái bằng cách sử dụng phép nhân đa thức)
Do đó an-1 chia hết cho a-1 (*)
Ta có A(x)= x2015+x+1=x2015-x2+x2+x+1
=x2(x2013-1)+(x2+x+1)=x2[(x3)671-1]+(x2+x+1)
Áp dụng (*) (x3)671-1 chia hết cho x3-1 nên A(x)=(x3-1).B(x)+(x2+x+1)
=(x+1)(x2+x+1).B(x)+(x2+x+1)=(x2+x+1).C(x) nên A(x) chia hết cho x2+x+1