Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử s chia hết cho 49 => 4S=4n^2+12n-152 = (2n^2 + 3)^2 - 161 chia hết cho 7=> (2n^2 + 3)^2 chia hết cho 7 ( do 161 chia hết cho 7) => 2n^2 + 3 chia hết cho 7 => (2n^2 + 3)^2 chia hết cho 49 nhân ra ta đc 4n^2 + 12 n +9 chia hết cho 49 => 4n^2 + 12 n +9 -161 ko chia hết cho 49 (do 161 ko chia hết cho 49) => ko xảy ra điều giả sử => đpcm
Bài 3:
a) Ta có: \(\left(3n-1\right)^2-4\)
\(=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)\)
\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)
b) Ta có: \(100-\left(7n+3\right)^2\)
\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)
\(=\left(10-7n-3\right)\left(10+7n+3\right)\)
\(=\left(7-7n\right)\left(13+7n\right)\)
\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)
c) Ta có: \(\left(3n+1\right)^2-25\)
\(=\left(3n+1-5\right)\left(3n+1+5\right)\)
\(=\left(3n-4\right)\left(3n+6\right)\)
\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)
d) Ta có: \(\left(4n+1\right)^2-9\)
\(=\left(4n+1-3\right)\left(4n+1+3\right)\)
\(=\left(4n-2\right)\left(4n+4\right)\)
\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)
\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3
=> (4n + 3)2 chia 3 dư 1 (1)
+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)2 chia 8 dư 1 (2)
Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1
Mà 25 chia 24 dư 1
=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)