Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 75. (42004+.......+4+1) + 25
= 25 . (4-1) . (42004+.....+4+1) + 25
= 25.[4.(42004+......+4+1) - (42004+......+4+1)] + 25
= 25.[ (4+ 42+........+ 42005 ) - ( 1+ 4 +........+42004)] + 25
= 25.(42005 - 1) + 25
= 25. 42005- 25 +25
= 25. 42005
= (25. 4). 42004
= 100. 22004
Mà 100 chia hết cho 100 => 100. 22004 chia hết cho 100
=> A chia hết cho 100 ( đccm)
\(A=75\left(4^{2004}+...+4+1\right)+25\)
\(=25\left(4-1\right)\left(4^{2004}+...+4+1\right)+25\)
\(=25\left[4\left(4^{2004}+...+4+1\right)-\left(4^{2004}+...+4+1\right)\right]+25\)
\(=25\left[\left(4+4^2+...+4^{2005}\right)-\left(1+4+...+4^{2004}\right)\right]+25\)
\(=25\left(4^{2005}-1\right)+25\)
\(=25.4^{2005}-25+25\)
\(=100.4^{2004}⋮100\)
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(A=75\cdot\dfrac{4^{2005}-1}{3}+25\)
\(=25\left(4^{2005}-1+1\right)=100\cdot4^{2004}⋮100\)
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(A=75\cdot B+25\)
\(=25\left(4^{2005}-1\right)+25\)
\(=25\cdot4^{2005}=100\cdot4^{2004}⋮100\)