Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5^{2005}+5^{2003}=5^{2003}\left(5^2+1\right)=5^{2003}.26=5^{2003}.2.13\) chia hết cho \(13\)
Vậy, \(5^{2005}+5^{2003}\) chia hết cho \(13\)
\(5^{2005}+5^{2003}\)
\(=5^{2003}.\left(5^2+1\right)\)
\(=5^{2003}.26\)
\(=5^{2003}.2.13\)\(⋮\)\(13\)
5^2005 + 5^2003 = 5^2003 (5^2 +1)
= 5^2003 .26 chia hết cho 13
52005+52003
=52003.(52+1)
=52003.26
=52003.13.2
Vì 13 chia hết cho 13 nên 52003 . 13 . 2 chia hết 13
Vậy: 52005+52003
Bài 1:
a,\(5^{2005}+5^{2003}=5^{2003}(25+1)=26.5^{2003}\vdots13(đpcm)\)
b,\(a^2+b^2+1\ge ab+a+b\)
<=>\(2a^2+2b^2+2\ge2ab+2a+2b\)
<=>\((a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)\ge0\)
<=>\((a-b)^2+(a-1)^2+(b-1)^2\ge0(tm)\)
=> đpcm
a) 52005 + 52003 = 52003 ( 52 + 1 ) = 52003 . 26 = 52003 . 2 .13
=> 52005 + 52003 chia hết cho 13
b) a2 + b2 +1 \(\ge\) ab + a + b
\(\Leftrightarrow\) 2a2 + 2b2 + 2 ≥ 2ab + 2a + 2b
\(\Leftrightarrow\)(a2 − 2ab + b2) + (a2 − 2a + 1) + (b2 − 2b + 1) ≥ 0
\(\Leftrightarrow\) (a − b)2 + (a − 1)2 + (b − 1)2 ≥ 0
=(8+5)*A+(17-4)*C
=13(A+C) chia hết cho 13