K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2023

\(A=\left\{x\in Z|\left(x^2-9\right)\left(x^2-7\right)\left(3x+5\right)=0\right\}\)

Giải pt \(\left(x^2-9\right)\left(x^2-7\right)\left(3x+5\right)=0\) \(\left(dk:x\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\x^2-7=0\\3x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\left(tm\right)\\x=\pm\sqrt{7}\left(ktm\right)\\x=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

Vậy \(A=\left\{-3;3\right\}\)

6 tháng 10 2023

cơn cậu mà cậu làm nốt câu B ở trang tớ hộ tớ đc k ạ

 

20 tháng 10 2023

\(\left(2x-4\right)\left(3x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-4=0\\3x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-\dfrac{5}{3}\right\}\).

15 tháng 8 2021

31A

32A

33A

34C

35B

36D

37D

38C

39C

40A

16 tháng 8 2021

E cảm ơn

 

27 tháng 11 2019
https://i.imgur.com/kHLWtCX.jpg
27 tháng 11 2019

MN NG GIẢI CHI TIẾT GIÚP E VS

9 tháng 10 2016

giả sử AI kéo dài cắt BC tại D.

ta có: \(\frac{BD}{CD}=\frac{c}{b}\Rightarrow BD=\frac{c}{b}CD\Leftrightarrow\overrightarrow{DB}=-\frac{c}{b}\overrightarrow{DC}\Leftrightarrow\overrightarrow{DI}+\overrightarrow{IB}=-\frac{c}{b}\left(\overrightarrow{DI}+\overrightarrow{IC}\right)\Leftrightarrow\left(1+\frac{c}{b}\right)\overrightarrow{DI}=-\overrightarrow{IB}-\frac{c}{b}\overrightarrow{IC}\Leftrightarrow\overrightarrow{ID}=\frac{b}{b+c}\overrightarrow{IB}+\frac{c}{b+c}\overrightarrow{IC}\)

9 tháng 10 2016

tiếp: Xét tam giác ABD có ID/IA = BD/AB= (ac/b+c)/c=a/b+c

=> ID=(a/b+c)IA

=> \(\overrightarrow{ID}=-\frac{a}{b+c}\overrightarrow{IA}\)

Thế vào (1) ta đc: 

\(-\frac{a}{b+c}\overrightarrow{IA}=\frac{b}{b+c}\overrightarrow{IB}+\frac{c}{b+c}\overrightarrow{IC}\)

\(\Leftrightarrow\frac{1}{b+c}\left(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right)=0\)

<=> \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\): đpcm

NV
16 tháng 9 2020

\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)=2\overrightarrow{MN}\)

AH
Akai Haruma
Giáo viên
10 tháng 1 2017

Lời giải:

ĐKXĐ: $0\leq x\leq 4$

Để phương trình có nghiệm trước tiên \(m\geq0\)

Ta có \(\sqrt{x}+\sqrt{4-x}=m\Rightarrow 4+2\sqrt{x(4-x)}=m^2\)

\(\Leftrightarrow x(4-x)=\left(\frac{m^2-4}{2}\right)^2\Leftrightarrow x^2-4x+\left(\frac{m^2-4}{2}\right)^2=0\) $(1)$

Trước tiên, để $(1)$ có nghiệm thì \(\Delta'=4-\left(\frac{m^2-4}{2}\right)^2\geq 0\Leftrightarrow \sqrt{8}\geq m\)

Ta thấy PT $(1)$ có xảy ra 2TH: có một nghiệm kép hoặc hai nghiệm đều dương. Nếu PT $(1)$ có hai nghiệm đều dương thì đồng nghĩa với phương trình ban đầu cũng có hai nghiệm dương (không thỏa mãn). Do đó PT đã cho có nghiệm duy nhất khi PT $(1)$ có nghiệm kép, hay \(\Delta =0\Leftrightarrow m=\sqrt{8}\)