K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

bớt xàm đc ko tth?

22 tháng 9 2019

Đặt \(a=\frac{x}{3};b=\frac{y}{3};c=\frac{z}{3}\)=> \(x+y+z=3\)

=> Cần Cm: \(x^2y+y^2z+z^2x\le4\)

Giả sử \(x\ge y\ge z\)

=> \(z\left(x-y\right)\left(y-z\right)\ge0\)

=> \(xyz+z^2y\ge y^2z+z^2x\)

Khi đó BĐT 

<=> \(xyz+z^2y+x^2y\le4\)

<=> \(y\left(x^2+z^2+xz\right)\le4\)

<=>\(y.\left[\left(3-y\right)^2-xz\right]\le4\) 

Do \(xz\ge0\)

=> \(y\left(3-y\right)^2\le4\)

<=> \(y^3-6y^2+9y-4\le0\)

<=> \(\left(y-4\right)\left(y-1\right)^2\le0\)luôn đúng do \(y< 3< 4\)

=> ĐPCM

Dấu bằng xảy ra khi \(x=2;y=1;z=0\)và các hoán vị

=> \(a=\frac{2}{3};b=\frac{1}{3};c=0\)và các hoán vị

6 tháng 8 2019

Cách 1 

Áp dụng BĐT cosi ta có:

\(\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)

=> \(\frac{a^2}{b}+3b\ge2\sqrt{2\left(a^2+b^2\right)}\)

Tương tự

=> \(VT+3\left(a+b+c\right)\ge2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(a^2+c^2\right)}\)

Lại có \(\sqrt{2\left(a^2+b^2\right)}\ge a+b;\sqrt{2\left(b^2+c^2\right)}\ge b+c;\sqrt{2\left(a^2+c^2\right)}\ge a+c\)

=> \(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

Cách 2 tương tự dùng Buniacoxki

12 tháng 8 2019

cảm ơn bạn nhiều.Mong bạn giúp đỡ

bài lớp mấy vậy 

21 tháng 3 2020

Cho a = b = c = 1 thử xem:P

Một bài rất easy để dùng sos đây ạ!1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)Suy...
Đọc tiếp

Một bài rất easy để dùng sos đây ạ!

1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) 

Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)

Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)

Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D

Bài toán 2\(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)

 

 

 

0
15 tháng 2 2020

Cần CM bĐT phụ sau : \(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\left(1\right)\)

Có \(a+b\ge2\sqrt{ab},\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\Rightarrow\) (1) đúng

Áp dụng (1) ta có \(\frac{1}{2a+b+c}=\frac{1}{\left(a+b+c\right)+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a+b+c}\right)\left(2\right)\)

Tương tự có \(\frac{1}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{b}\right)\left(3\right),\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{c}\right)\left(4\right)̸\)

Cọng (2),(3) và (4) có \(VT\le\frac{1}{4}\left(\frac{3}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

NV
16 tháng 2 2020

\(\frac{1}{2a+b+c}=\frac{1}{a+a+b+c}\le\frac{1}{4}\left(\frac{1}{a+a}+\frac{1}{b+c}\right)\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự ta có: \(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
7 tháng 4 2022

\(\left(2+7\right)\left(2a^2+\dfrac{7}{b^2}\right)\ge\left(2a+\dfrac{7}{b}\right)^2\)

\(\Rightarrow\sqrt{2a^2+\dfrac{7}{b^2}}\ge\dfrac{1}{3}\left(2a+\dfrac{7}{b}\right)\)

Tương tự: \(\sqrt{2b^2+\dfrac{7}{c^2}}\ge\dfrac{1}{3}\left(2a+\dfrac{7}{c}\right)\) ; \(\sqrt{2c^2+\dfrac{7}{a^2}}\ge\dfrac{1}{3}\left(2c+\dfrac{7}{a}\right)\)

Cộng vế:

\(VT\ge\dfrac{1}{3}\left(2a+2b+2c+\dfrac{7}{a}+\dfrac{7}{b}+\dfrac{7}{c}\right)=2+\dfrac{7}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\ge2+\dfrac{7}{9}.\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (do \(a+b+c=3\))

\(VT\ge2+\dfrac{7}{9}.\left(\sqrt{a}.\sqrt{\dfrac{1}{a}}+\sqrt{b}.\sqrt{\dfrac{1}{b}}+\sqrt{c}.\sqrt{\dfrac{1}{c}}\right)^2=9\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa...
Đọc tiếp

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).

Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)

Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:)) 

Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)

Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:

\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)

---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------

 

0
12 tháng 6 2019

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

12 tháng 6 2019

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)

22 tháng 5 2016

dùng BĐT Cachy-S

22 tháng 5 2016

mình không hiểu lắm. Bạn giải rõ ra được không?