Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số cần tìm là 5,32:0,125=42,56
b: \(A=1+\dfrac{1}{2019}-1-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}=0\)
\(\frac{1}{2}:0,5-\frac{1}{4}:0,25+\frac{1}{8}:0,125-\frac{1}{10}:0,1\)
\(=\frac{1}{2}\times2-\frac{1}{4}\times4+\frac{1}{8}\times8-\frac{1}{10}\times10\)
\(=1-1+1-1\)
\(=0\)
A = \(\dfrac{1}{12}\)+ \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+...+\(\dfrac{1}{9900}\)
A = \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A = \(\dfrac{1}{3}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{97}{300}\)
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{99.100}$
$=\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}$
$=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}$
\(\dfrac{5}{8}:\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{5}{8}\times\dfrac{4}{3}-\dfrac{1}{6}=\dfrac{5}{6}-\dfrac{1}{6}=\dfrac{4}{6}=\dfrac{2}{3}\)
\(\left(\dfrac{3}{14}+\dfrac{1}{2}\right)\times\dfrac{7}{5}=\left(\dfrac{3}{14}+\dfrac{7}{14}\right)\times\dfrac{7}{15}=\dfrac{10}{14}\times\dfrac{7}{15}=\dfrac{5}{7}\times\dfrac{7}{15}=\dfrac{5}{12}=\dfrac{1}{3}\)
= 13/5 x 1/4 x 3/2
= 13 x 1 x 3/ 5 x 4 x 2
= 39/40
Mới thế đã hai năm trôi qua,câu trả lời từ mọi người vẫn KO XUẤT HIỆN.
Ko biết sau này câu trả lời có xuất hiện hay ko...
\(=\dfrac{3}{4}-\dfrac{5}{6}\times\dfrac{7}{24}\times\dfrac{12}{7}=\dfrac{3}{4}-\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{3}{4}-\dfrac{5}{6}\left(\dfrac{1}{6}+\dfrac{1}{8}\right):\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\cdot\dfrac{7}{24}\cdot\dfrac{12}{7}\)
\(=\dfrac{3}{4}-\dfrac{5}{12}\)
\(=\dfrac{4}{12}=\dfrac{1}{3}\)
2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010
Cám ơn bạn