Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
a) Gọi 2 số tự nhiên liên tiếp là n, n + 1 ( n thuộc N)
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ.
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2.
b) Gọi 3 số tự nhiên liên tiếp là n, n + 1, n + 2 (n thuộc N)
Ta có:
n + (n + 1) + (n + 2) = 3n + 3 chia hết cho 3 (vì 3n và 3 đều chia hết cho 3 nên tổng của chúng chia hết cho 3)
a) Trong 2 số tự nhiên liên tiếp chắc rằng sẽ có 1 số chẵn và 1 số lẻ Suy ra : số chẵn sẽ chia hết cho 2
mk chỉ suy luận được câu a thôi
a, Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2
Nếu a ko chia hết cho 2 =>a là số lẻ
a=2k+1
=>a+1=(2k+1)+1
=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)
b, Nếu a chia hết cho 3=> có 1 số chia hết cho 3
Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3
nếu a=3k+2 thì
=>a+1=3k+3, chia hết cho 3.
A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)
Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ
Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2
B)
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ
Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2
b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
a) Ta có: 2 STN liên tiếp là: B(2) + 1 và B( 2) + 2 ( vì B(2) thay thế cho 0 )
Vì B(2) chia hết cho 2 và 2 chia hết cho 2
=> B(2) + 2 chia hết cho 2
b) Ta có: 3 STN liên tiếp là: B(3) + 1; B(3) + 2; B(3) + 3 ( vì B(3) thay thế cho 0 )
Vì B(3) chi hết cho 3 và 3 chia hết cho 3
=> B(3) + 3 chia hết cho 3
^_^ Vũ Dương Bách
cam on ban