Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Điều đương nhiên
b,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{999.1000}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{999}-\frac{1}{1000}\)
= \(1-\frac{1}{1000}\)
= \(\frac{999}{1000}\)
K MIK NHA BẠN ^^
Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000
Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500
Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480
Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3
= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)
=n.(n+1).(n+2)
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
B1
Số số hạng của dãy là : (99 - 1) : 1 + 1 = 99 ( số )
Tổng của dãy là : (99 + 1) x 99 : 2 = 4950
B2
Số số hạng của dãy là : (999 - 1) : 2 + 1 = 500 (số)
Tổng của dãy là : (999 + 1) x 500 : 2 = 250000
B3
Số số hạng của dãy là : (998 - 10) : 2 + 1 = 495(số)
Tổng của dãy là : (998 + 10) x 495 : 2 = 249480
B4
B5
Để mình thử đã rồi giải cho
Tk hoặc sửa hộ mình nhé
ko can k
lop 3 em cho anh lop 7 (hsg) bai 1
B=(1+99)+(2+98)+...+(49+51)+50
=49*100+50=4950
A = chịu
B = ( 1 + 99 ) + ( 2 + 98 ) + ......
= 100 . 50 = 5000
C = ( 1 + 999 ) + ( 3 + 997 ) + .....
= 1000 . 500 = 500000
D = ( 10 + 998 ) + ( 12 + 996 ) + ......
= 1008 . 495 = 498960