Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(a+a^2+a^3+...+a^{30}\)
\(=a\left(1+a\right)+a^3\left(1+a\right)+a^5\left(1+a\right)+...+a^{29}\left(1+a\right)\)
\(=\left(a+a^3+a^5+...+a^{29}\right)\left(1+a\right)\)chia hết cho 1+a hay a=a^2+a^3+...+a^30 chia hết a+1 với a là số tự nhiên
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Ta có : \(a+a^2+a^3+...+a^{30}\)
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+...+a^{29}\left(a+1\right)\)
\(=\left(a+1\right)\left(a+a^3+...+a^{29}\right)⋮\left(a+1\right)\)
\(\Rightarrowđpcm\)
a, ta có 2 số liên tiếp lần lượt là n và n +1 <=> n^2 +n
giả thiết nếu n là lẻ thì lẻ +lẻ = chẵn; chia hết cho 2
nếu n là chắn thì chẵn bình phg công chẵn sẽ ra chẵn => chia hết cho 2
Có : a+a^2+a^3+a^4+....+a^29+a^30
= (a+a^2)+(a^3+a^4)+....+(a^29+a^30)
= a.(a+1)+a^3.(a+1)+....+a^29.(a+1)
= (a+1).(a+a^3+...+a^29) chia hết cho a+1
=> ĐPCM
k mk nha
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\)
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+...+a^{29}\left(a+1\right)\)
\(=\left(a+1\right)\left(a+a^3+...+a^{29}\right)\)
Mà a là STN \(\Rightarrow\left(a+1\right)\left(a+a^3+...+a^{29}\right)⋮\left(a+1\right)\)
\(\Rightarrow a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮\left(a+1\right)\)