Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.
a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10
Ta thấy : ( a + 10 ) - a = 10 .
Mà 10 lại chia hết cho 10
Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn )
b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99
Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100
( 50a + 48 ) + ( 50a + 52 ) = 100a + 100
( 50a + 1 ) + ( 50a + 49 ) = 100a + 50
Mà 50 và 100 thì lại chia hết cho 50
Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50
*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....
*Sau đó ta chia 1010 thành 1009 nhóm
*Theo nguyên lý Dirichlet ta có 2 trường hợp
Ta có ĐPCM
Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn
Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9
Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!
Câu hỏi của nguyen anh thu - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
Lấy 6 số chia cho 5 và xét phần dư của chúng.
Vì số dư phép chia cho 5 chỉ có thể là 0; 1; 2; 3; 4) nên trong 6 số dư thì chắc chắn có 2 số dư bằng nhau (Nguyên lý Direchle).
Khi đó lấy hai số tương ứng và hiệu của chúng sẽ chia hết cho 5 (vì hai số khi chia cho 5 có cùng số dư thì hiệu sẽ chia hết cho 5).