Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{60n}< 2^{140n}< 3^{100n}\)
\(5^{60n}=\left(5^3\right)^{20n}=125^{20n}\\ 2^{140n}=\left(2^7\right)^{20n}=128^{20n}\\ 3^{100n}=\left(3^5\right)^{20n}=243^{20n}\)
Mà\(125< 128< 243\Rightarrow125^{20n}< 128^{20n}< 243^{20n}\Rightarrow5^{60n}< 2^{140n}< 3^{100n}\)
Vậy đã CMR: \(5^{60n}< 2^{140n}< 3^{100n}\)
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
Ta có :
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=30+2^4\times30+2^8\times30+..2^{56}\times30\)
Vậy A chia hết cho 30 nên A cũng chia hết cho 15
hay nói cách khác A là Bội của 15
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(\Rightarrow A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)
\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)
2x/3-2y=1/3
2/y=2x/3-1/3
2/y=2x-1/3
=>y(2x-1)=6
Vì x thuộc Z =>2x-1 thuộc Z
y thuộc Z
Mà 2x-1 lẻ
6=1.6=6.1=2.3=3.2=(-1).(-6)=(-6).(-1)=(-2).(-3)=(-3).(-2)
Suy ra:2x-1=1 và y=6
2x-1=3 và y=2
2x-1=-1 và y=-6
2x-1=-3 và y=-2
RỒI BẠN TÍNH X VÀ KẾT LUẬN NHA !!
CHÚC BẠN HỌC TỐT!!
CHÚ Ý:CHỮ "THUỘC" BẠN VIẾT KÍ HIỆU NHA
Ta có:
5⁶⁰ⁿ = (5³)²⁰ⁿ = 125²⁰ⁿ
2¹⁴⁰ⁿ = (2⁷)²⁰ⁿ = 128²⁰ⁿ
3¹⁰⁰ⁿ = (3⁵)²⁰ⁿ = 243²⁰ⁿ
Do 125 < 128 < 243
125²⁰ⁿ < 128²⁰ⁿ < 243²⁰ⁿ
Vậy 5⁶⁰ⁿ < 2¹⁴⁰ⁿ < 3¹⁰⁰ⁿ