K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

Ta có: x2 - 2x + 2 = x2 - 2x + 1 + 1 = (x - 1)2 + 1

Vì (x - 1)2 \(\ge\)0 => (x - 1)2 + 1 > 0

                                      Vậy đa thức f(x) = x2 - 2x + 2 không có nghiệm

23 tháng 4 2018

x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2

Mà (x+1)^2 \(\ge\)0

=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0 

Suy ra đa thức vô nghiệm

ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0

=> x2 + 2x + 3 > 0

=> đa thức trên ko có nghiệm

Chúc bn hok tốt!!!^^

26 tháng 4 2018

\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\)  > 0 với mọi x

Vậy đa thức f(x) không có nghiệm

26 tháng 4 2018

Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.

\(\Rightarrow x^2+2x+1+2=0\)

\(\Rightarrow x^2+x+x+1+2=0\)

\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)

\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+2=0\)

\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)

\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)

27 tháng 5 2016

Ta có:

3\(x^6\)\(\ge\)0 với mọi x

2\(x^4\)\(\ge\)0 với mọi x

\(x^2\)\(\ge\)0 với mọi x

=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x

Vậy f(x) không co nghiệm

6 tháng 7 2015

f(x) = 2x3 - 2x2 + 3x - 2                           (1)

g(x) = 2 - x3 - 2x - x3 - x = 2 - 2x3 - x        (2)

lấy (1) + (2), ta đc:

      2x3 - 2x2 + 3x - 2        

+   - 2x3               -x + 2

------------------------------------

           -2x2 + 2x

=>   -2x2 + 2x = 2x - 2x2 

.......................   (chỉ cần chứng minh f(x) + g(x) âm thì f(x) và g(x) ko  thể cùng nhận giá trị dương)

a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)

\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)

\(=6x^4-4x^3-x+11\)

Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)

\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)

\(=5x^4-4x^3-2x^2-x+9\)

b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)

\(=x^4+2x^2+2\)

9 tháng 4 2018

\(f\left(x\right)=2x^2+x+1=2\left(x^2+\frac{1}{2}x\right)+1\)

\(=2\left(x^2+2\cdot\frac{1}{4}x+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2\right)+1\)

\(=2\left(x+\frac{1}{4}\right)^2-2\cdot\left(\frac{1}{4}\right)^2+1=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\)

Vì \(2\left(x+\frac{1}{4}\right)^2\ge0\) => \(f\left(x\right)=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

=> f(x) vô nghiệm 

13 tháng 5 2018

câu này mk ko bt